精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=-8+t}\\{y=\frac{t}{2}}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=2{s}^{2}}\\{y=2\sqrt{2}}s\end{array}\right.$(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.

分析 求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.

解答 解:直线l的直角坐标方程为x-2y+8=0,
∴P到直线l的距离d=$\frac{|2{s}^{2}-4\sqrt{2}s+8|}{\sqrt{5}}$=$\frac{(\sqrt{2}s-2)^{2}+4}{\sqrt{5}}$,
∴当s=$\sqrt{2}$时,d取得最小值$\frac{4}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$.

点评 本题考查了参数方程的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=(  )
A.-$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=\frac{{1+{2^x}}}{{1+{4^x}}}$的值域为(  )
A.$({0,\frac{{\sqrt{2}+1}}{2}}]$B.$({-∞,\frac{{\sqrt{2}+1}}{2}}]$C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角A,B,C的对应边分别为a,b,c,且满足(a-b)(sinA+sinB)=(a-c)sinC.
(1)求角B的大小;
(2)若b=3,求AC边上高h的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标系中,点A在圆ρ2-2ρcosθ-4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,已知$\sum_{i=1}^{10}$xi=225,$\sum_{i=1}^{10}$yi=1600,$\stackrel{∧}{b}$=4,该班某学生的脚长为24,据此估计其身高为(  )
A.160B.163C.166D.170

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥0}\\{x+2y-2≥0}\\{x≤0}\\{y≤3}\end{array}\right.$,则目标函数z=x+y的最大值为(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=xcosx,f(x)=cos(2π-x)-x3sinx的奇偶性分别为奇函数;偶函数.

查看答案和解析>>

同步练习册答案