精英家教网 > 高中数学 > 题目详情
已知中心在原点、焦点在x轴上的椭圆,其离心率e=
2
2
,且经过抛物线x2=4y的焦点.
(1)求椭圆的标准方程;
(2)若过点B(2,0)的直线l与椭圆交于不同的亮点E、F(E在B、F之间)且
BE
BF
,试求实数λ的取值范围.
精英家教网
(1)设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0)
∵椭圆的离心率e=
2
2
,且经过抛物线x2=4y的焦点
c
a
=
2
2
,b=1

∴a2=2
∴椭圆的标准方程为
x2
2
+y2=1

(2)由题意知l的斜率存在且不为零,
设l方程为x=my+2(m≠0)①,代入
x2
2
+y2=1
,整理得(m2+2)y2+4my+2=0,由△>0得m2>2.
设E(x1,y1),F(x2,y2),则
BE
BF
,(x1-2,y1)=λ(x2-2,y2),
∴y1=λy2
y1+y2=
-4m
m2+2
y1y2=
2
m2+2

(1+λ)2
λ
=
8m2
m2+2
=
8
1+
2
m2

∵m2>2,∴4<
8
1+
2
m2
<8
∴4<
(1+λ)2
λ
<8
∵λ>0
3-2
2
<λ<3+2
2
且λ≠1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线的一条渐近线为mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一个值,使得双曲线的离心率大于3的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大兴区一模)已知中心在原点,焦点在x轴上的双曲线的离心率为
3
2
,实轴长为4,则双曲线的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线C,过点P(2,
3
)且离心率为2,则双曲线C的标准方程为
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知中心在原点,焦点在x轴上的双曲线的一条渐近线的方程为y=
1
2
x
,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为
3
x-y=0
,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案