精英家教网 > 高中数学 > 题目详情
20.如图,ABCD是圆O的内接正方形,E是劣弧CD上一点,EA交BD于F,EB交AC于G,且GF⊥AE.
(1)求证:AF•AE=AO•AC;
(2)求证:$\frac{{2A{O^2}}}{{A{F^2}}}-\frac{FG}{AF}=1$.

分析 (1)连接CE,由题意可知∠AOF=90°,由AC为圆的直径,∠AEC=90°,因此△AOF∽△AEC,根据三角形相似的性质,$\frac{AF}{AO}$=$\frac{AC}{AE}$,可知:AF•AE=AO•AC;
(2)设∠GOF=θ,⊙O的半径为1,则EC=2,分别求得AF和FG,在Rt△PMN中,∠AEB=∠FEG=∠ADB=45°,EF=FG,AF+FE=AE,整理得:1+tanθ=2cos2θ,由cosθ=$\frac{AO}{AF}$,tanθ=$\frac{FG}{AF}$,即可证明$\frac{{2A{O^2}}}{{A{F^2}}}-\frac{FG}{AF}=1$.

解答 解:(1)证明:连接CE,
∵ABCD是圆O的内接正方形,AC和BD为三角形的对角线,
∴AC⊥BD,
∴∠AOF=90°,
由AC为圆的直径,
∴∠AEC=90°,
∴△AOF∽△AEC,
∴$\frac{AF}{AO}$=$\frac{AC}{AE}$,
∴AF•AE=AO•AC;
(2)证明:设∠GOF=θ,⊙O的半径为1,则EC=2,AE=AC•cosθ=2cosθ,
AF=$\frac{AO}{cosθ}$=$\frac{1}{cosθ}$,
FG=AF•tanθ=$\frac{tanθ}{cosθ}$,
在Rt△PMN中,∠AEB=∠FEG=∠ADB=45°,
∴EF=FG,
∵AF+FE=AE,
∴$\frac{1}{cosθ}$+$\frac{tanθ}{cosθ}$=2cosθ,
∴1+tanθ=2cos2θ,
∴2cos2θ-tanθ=1,
在RT△AOF中,cosθ=$\frac{AO}{AF}$,
在RT△AFG中,tanθ=$\frac{FG}{AF}$,
∴$\frac{{2A{O^2}}}{{A{F^2}}}-\frac{FG}{AF}=1$.

点评 本题考查圆方程的综合应用,考查正方形的性质,圆周角定理,相似三角形的性质,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右顶点为A,上顶点为B,且$|{AB}|=\sqrt{3}$,椭圆的离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆E的标准方程;
(2)若直线l:y=kx+m与椭圆E相交于C,D两个不同的点,且坐标原点O到直线l的距离为$\frac{{\sqrt{6}}}{3}$,求证:$\overline{OC}•\overline{OD}=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知k>0,x,y满足约束条件$\left\{{\begin{array}{l}{x≥2}\\{x+y≤4}\\{y≥k(x-4)}\end{array}}\right.$,若z=x-y的最大值为4,则k的取值范围是(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.调查某种药是否对心脏病有治疗作用时,得k≈4.56,则认为此药物与心脏病之间(  )
A.有95%的把握认为两者有关
B.约有95%的心脏病患者使用药物有作用
C.有99%的把握认为两者有关
D.约有99%的心脏病患者使用药物有作用

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有下列各式:①sin1125°;②tan$\frac{37}{12}$π•sin$\frac{37}{12}$π;③$\frac{sin4}{tan4}$;④sin|-1|,其中为负值的序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有以下程序:

根据如上程序,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围是(-∞,0)∪{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC中,AB=10,AC=6,BC=8,点M为边AB上任意一点,则$\overrightarrow{CM}$•$\overrightarrow{CA}$+$\overrightarrow{CM}$•$\overrightarrow{CB}$的取值范围是(  )
A.[0,100]B.[36,64]C.(36,100)D.[6,10]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,a2和a18为方程x2+15x+16=0的两根,则a3a10a17等于(  )
A.-256B.64C.-64D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设{an}是一个公差不为零的等差数列,其前n项和为Sn,已知S9=45,且a1,a2,a4 成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案