精英家教网 > 高中数学 > 题目详情

某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的世博会宣传广告、一个公益广告,要求最后播放的不能是商业广告,且世博会宣传广告与公益广告不能连续播放,两个世博会宣传广告也不能连续播放,则有多少种不同的播放方式?

108(种)

解析解:用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.
第一类:宣传广告与公益广告的播放顺序是2、4、6,分6步完成这件事,共有3×3×2×2×1×1=36(种)不同的播放方式.
第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36(种)不同的播放方式.
第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36(种)不同的播放方式.
由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108(种).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,其中当为偶数时,;当为奇数时,
(1)证明:当时,
(2)记,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由数字0,1,2,3,4,5可以组成:
(1)多少个没有重复数字的六位偶数;
(2)多少个没有重复数字的比102345大的自然数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用1,2,3,4,5五个数字组成无重复数字的五位数,其中恰有一个奇数夹在两个偶数之间的五位数个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(1+x)na0a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0Sna1a2a3+…+an
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.
(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;
(Ⅱ)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?

(百千克/户)

 
(百千克/户)
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有6本不同的书,按照以下要求处理,各有多少种不同的分法?
(1)一堆一本,一堆两本,一堆三本;
(2)甲得一本,乙得两本,丙得三本;
  (3)一人得一本,一人得二本,一人得三本;
(4)平均分给甲、乙、丙三人;
(5)平均分成三堆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行.求安排这6项工程的不同排法种数.

查看答案和解析>>

同步练习册答案