精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C的对边分别为a,b,c,已知tanA=$\frac{1}{2}$,B=$\frac{π}{6}$,b=1,则a等于(  )
A.$\frac{2\sqrt{5}}{5}$B.1C.$\sqrt{5}$D.2$\sqrt{5}$

分析 由已知利用同角三角函数基本关系式可求sinA的值,进而利用正弦定理可求a的值.

解答 解:∵tanA=$\frac{1}{2}$,B=$\frac{π}{6}$,b=1,
∴由cosA=2sinA,sin2A+cos2A=1,可得:sinA=$\frac{\sqrt{5}}{5}$,
∴由正弦定理可得:a=$\frac{b•sinA}{sinB}$=$\frac{1×\frac{\sqrt{5}}{5}}{\frac{1}{2}}$=$\frac{2\sqrt{5}}{5}$.
故选:A.

点评 本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|-|2x-3|.
(1)已知f(x)≥m对0≤x≤3恒成立,求实数m的取值范围;
(2)已知f(x)的最大值为M,a,b∈R+,a+2b=Mab,求a+2b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M(-2,b)在不等式2x-3y+5<0表示的平面区域内,则b的取值范围是(  )
A.b>$\frac{1}{3}$B.b>-9C.b<1D.b≤$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系为(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn>0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.则数列{an•bn}的前n项和Tn为(  )
A.3n-1B.2n+1C.n•3nD.-2n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设Sn为数列{an}的前n项和,Sn=2n2+5n.
(1)求证:数列{3${\;}^{{a}_{n}}$}为等比数列;
(2)设bn=2Sn-3n,求数列{$\frac{n}{{a}_{n}{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在(1+x+x2n=${D}_{n}^{0}$$+{D}_{n}^{1}$x$+{D}_{n}^{2}$x2+…$+{D}_{n}^{r}$xr+…$+{D}_{n}^{2n-1}$x2n-1$+{D}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$…,D${\;}_{n}^{r}$…,D${\;}_{n}^{2n}$叫做三项式系数
(1)求D${\;}_{4}^{0}$$+{D}_{4}^{2}$$+{D}_{4}^{4}$$+{D}_{4}^{6}$$+{D}_{4}^{8}$的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C${\;}_{2n}^{n}$=(C${\;}_{n}^{0}$)2+(C${\;}_{n}^{1}$)2+(C${\;}_{n}^{2}$)2+…+(C${\;}_{n}^{n}$)2,利用上述思想方法,请计算D${\;}_{2017}^{0}$C${\;}_{2017}^{0}$-D${\;}_{2017}^{1}$C${\;}_{2017}^{1}$+D${\;}_{2017}^{2}$C${\;}_{2017}^{2}$-…+(-1)rD${\;}_{2017}^{r}$C${\;}_{2017}^{r}$+..$+{D}_{2017}^{2016}$C${\;}_{2017}^{2016}$$-{D}_{2017}^{2017}$C${\;}_{2017}^{2017}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足z+i=$\frac{1+i}{i}$(i为虚数单位),则$\overline{z}$=(  )
A.-1+2iB.-1-2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线x-$\sqrt{2}$y-$\sqrt{2}$=0经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和顶点,则椭圆C的离心率为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案