精英家教网 > 高中数学 > 题目详情
13.已知定义在R上的函数f(x)满足f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x)的表达式为f(x)=x2-2.

分析 根据完全平方公式可得到${x}^{2}+\frac{1}{{x}^{2}}=(x+\frac{1}{x})^{2}-2$,这样将$x+\frac{1}{x}$换上x便可得出f(x)的表达式.

解答 解:$f(x+\frac{1}{x})={x}^{2}+\frac{1}{{x}^{2}}=(x+\frac{1}{x})^{2}-2$;
∴f(x)=x2-2.
故答案为:f(x)=x2-2.

点评 考查函数解析式的定义及求法,完全平方公式的运用,以及由f(g(x))的解析式求f(x)的解析式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在体积为$\frac{{\sqrt{3}}}{2}$的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为$\sqrt{7},\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四棱锥P-ABCD的底面为正方形,且PA=PB=PC=PD=$\sqrt{3}$.若其外接球半径为2,则四棱锥P-ABCD的高为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,△ABC中,边AC上一点F分AC为$\frac{AF}{FC}$=$\frac{2}{3}$,BF上一点G分BF为$\frac{BG}{GF}$=$\frac{3}{2}$,AG的延长线与BC交于点E,则BE:EC=3:5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足:a1=1,an+1=2an+1,数列{bn}满足:bn=${log_{({a_{n+1}})}}$a,其中a>0且a≠1,n∈N*
(1)求证:数列{an+1}为等比数列,并求出数列{an}的通项公式;
(2)试问数列$\left\{{\frac{1}{b_n}}\right\}$是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若a=2,记cn=$\frac{1}{{({a_n}+1){b_n}}}$,数列{Cn}的前n项和为Tn,数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为Rn,若对任意n∈N*,不等式λnTn+$\frac{{2{R_n}}}{{{a_n}+1}}$<2(λn+$\frac{3}{{{a_n}+1}}$)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知an+1=an+n+1,a1=1,则按如图所示的框图运算输出的值对应的项是(  )
A.a8B.a9C.a10D.a11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py(p>0)的焦点F到直线l:x-y+1=0上.
(1)求抛物线C的方程;
(2)设直线x-y+2=0与抛物线C相交于P,Q两点,求|PQ|以及线段PQ中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知集合A={x|x2+2x-8=0},B={x|x2+2x-3a=0}.
①A∩B=B,求a的值;
②A∪B=B,求a的值.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(理)试卷(解析版) 题型:解答题

选修4—4:坐标系与参数方程

已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.

(1)把C1的参数方程化为极坐标方程;

(2)求C1与C2交点的极坐标().

查看答案和解析>>

同步练习册答案