精英家教网 > 高中数学 > 题目详情
3.在体积为$\frac{{\sqrt{3}}}{2}$的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为$\sqrt{7},\sqrt{19}$.

分析 由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度.

解答 解:如图,

在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高,
∵${V}_{A-BCD}=\frac{\sqrt{3}}{2}$,AB=1,∴由$\frac{1}{3}{S}_{△BCD}•AB=\frac{\sqrt{3}}{2}$,得${S}_{△BCD}=\frac{3\sqrt{3}}{2}$.
又BC=2,BD=3,得$\frac{1}{2}×2×3×sinB=\frac{3\sqrt{3}}{2}$,得sinB=$\frac{\sqrt{3}}{2}$,∴cosB=$±\frac{1}{2}$.
当cosB=$\frac{1}{2}$时,CD2=22+32-2×2×3×$\frac{1}{2}$=7,则CD=$\sqrt{7}$;
当cosB=-$\frac{1}{2}$时,CD2=22+32-2×2×3×($-\frac{1}{2}$)=19,则CD=$\sqrt{19}$.
∴CD长度的所有值为$\sqrt{7}$,$\sqrt{19}$.
故答案为:$\sqrt{7}$,$\sqrt{19}$.

点评 本题考查棱锥的结构特征,考查了棱锥的体积公式,训练了余弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线分别为l1,l2,直线l:y=-x+c过双曲线C的右焦点F(c,0),且分别与直线l1,l2交于A,B两点,若$\overrightarrow{FA}$=$\overrightarrow{AB}$,则双曲线C的离心率为(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.4D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程|x2-4|x|-5|=m有6个互不相等的实根,则m的取值范围为(5,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知:点E、F分别是正方形ABCD的边AB、BC的中点,BD、DF分别交CE于点G、H,若正方形ABCD的面积是240,则四边形BFHG的面积等于(  )
A.26B.28C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某统计部门随机抽查了3月1日这一天新世纪百货童装部100名顾客的购买情况,得到如图数据统计表,已知购买金额在2000元以上(不含2000元)的频率为0.4.
购买金额频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)确定x,y,p,q的值;
(2)为进一步了解童装部的购买情况是否与顾客性别有关,对这100名顾客调查显示:购物金额在2000元以上的顾客中女顾客有35人,购物金额在2000元以下(含2000元)的顾客中男顾客有20人;
①请将列联表补充完整:
女顾客男顾客合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表,判断是否有97.5%的把握认为童装部的购买情况与顾客性别有关?
参考数据:
P(K2≥k)0.010.050.0250.01
k2.7063.8415.0246.635
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值记为an,其中a1=0,a2=1,则an=n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班有25名男生、15名女生共40人,现对他们更爱好文娱还是更爱好体育进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中数据,制作2×2列联表,并判断能否在犯错概率不超过0.10的前提下认为性别与是否更爱好体育有关系?
(2)若要从更爱好体育的学生中各随机选2人,求所选2人中女生人数X的期望;
(3)若要从更爱好文娱和更爱好体育的学生中各选一人分别做文体活动协调人,求选出的两人恰好是一男一女的概率;
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 更爱好体育更爱好文娱 合计
 男生   
 女生   
 合计  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知圆O的一条直径为AB,PE是圆O的一条切线,E为切点,PC是圆O的一条割线,且交圆O于C,D两点,AB交PC于F,BE交PC于G,△AFC∽△ACB.
(1)求证:∠PEG=∠PGE;
(2)若PG=5,PD=3,求DC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数f(x)满足f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x)的表达式为f(x)=x2-2.

查看答案和解析>>

同步练习册答案