精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
3
+
y2
4
=1
的上焦点为F,直线x+y+1=0和x+y-1=0与椭圆相交于点A,B,C,D,则AF+BF+CF+DF=
 
分析:由题意可知AB=CF+DF=
24
7
,则AF+BF+AB=4a=8,进而可得AF+BF=8-AB=8-
24
7
,由此可知答案.
解答:解:直线x+y+1=0代入椭圆
x2
3
+
y2
4
=1
,并整理得7x2+6x-9=0,
设A(x1,y1),B(x2,y2),则x1+x2=-
6
7
x1x2=-
9
7

AB=
(1+1)[(-
6
7
)
2
-4 ×(-
9
7
)]
=
24
7

同理,可得CD=CF+DF=
24
7

∵AF+BF+AB=4a=8,
∴AF+BF=8-AB=8-
24
7

∴AF+BF+CF+DF=(8-
24
7
)+
24
7
=8.
答案:8.
点评:本题考查椭圆的性质及其应用,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
3
+
y2
4
=1
的焦点F与抛物线C:y2=2px(p>0)的焦点关于直线x-y=0对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab≠0,b2≠4a),M是抛物线C上的点,设直线AM,BM与抛物线的另一交点为M1,M2.求证:当M点在抛物线上变动时(只要M1,M2存在且M1≠M2)直线M1M2恒过一定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆与双曲线
x23
-y2=1
有共同的焦点,且过点P(2,3),求双曲线的渐近线及椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点F1(0,-1),F2(0,1),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|,则椭圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区二模)已知△ABC的顶点B、C在椭圆
x2
3
+y2=1上,且BC边经过椭圆的一个焦点,顶点A是椭圆的另一个焦点,则△ABC的周长是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C以双曲线
x23
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案