精英家教网 > 高中数学 > 题目详情
16.在△ABC中,已知下列条件,解三角形:
(1)a=10,b=20,A=80°;
(2)b=10,c=5$\sqrt{6}$,C=60°;
(3)a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°.

分析 利用正弦定理,结合角的正弦值,注意运用三角形的边角关系和内角和定理,即可解三角形

解答 解:(1)由正弦定理:sinB=$\frac{b}{a}$sinA=2sin80°≈1.96>1,B不存在,所以此三角形为无解;
(2)由正弦定理:sinB=$\frac{b}{c}$sinC=$\frac{\sqrt{2}}{2}$,
∵b<c,∴B<C,
∴B=45°,A=75°,
由正弦定理:a=$\frac{bsinA}{sinB}$=5($\sqrt{3}$+1);
(3)∵在△ABC中,a$\sqrt{3}$,b=$\sqrt{2}$,B=45°,
∴由正弦定理sinA=$\frac{a}{b}$sinB=$\frac{\sqrt{3}}{2}$,又a>b,
∴A>B,
∴A=60°或A=120.
①若A=60°,则C=180°-45°-60°=75°,
由正弦定理得:c=2sin75°=2sin(45°+30°)=$\frac{\sqrt{6}+\sqrt{2}}{2}$;
②若A=120°,则C=15°,同理可得,c=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

点评 本题考查正弦定理,考查解三角形,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.执行程序框图,该程序运行后输出的k的值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ln x-cx(c∈R)
(1)讨论函数f(x)的单调性.
(2)若f(x)≤x2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$({x^2}+3){(x-\frac{2}{x})^6}$展开式中常数项为-240.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={a,0,-1},B={c+b,$\frac{1}{a+b}$,1},且A=B,则a=1,b=-2,c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设A为三阶矩阵,r(A)=2,若a1,a2为齐次线性方程组Ax=0的两个不同的解,k为任意常数,则方程组Ax=0的通解为(  )
A.ka1B.ka2C.k$\frac{{a}_{1}+{a}_{2}}{2}$D.k$\frac{{a}_{1}-{a}_{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sinx-xcosx.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)求证:当$x∈(0\;,\;\frac{π}{2})$时,$f(x)<\frac{1}{3}{x^3}$;
(Ⅲ)若f(x)>kx-xcosx对$x∈(0\;,\;\frac{π}{2})$恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-x2,g(x)=(λ-1)x2+2(λ-1)x-2.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)a=2时,有f(x)≤g(x)恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设ω∈(0,10],则函数y=sinωx在区间(-$\frac{π}{3}$,$\frac{π}{6}$)上是增函数的概率是$\frac{3}{20}$.

查看答案和解析>>

同步练习册答案