精英家教网 > 高中数学 > 题目详情
4.$({x^2}+3){(x-\frac{2}{x})^6}$展开式中常数项为-240.

分析 把${(x-\frac{2}{x})}^{6}$ 按照二项式定理展开,可得(x2+3)•${(x-\frac{2}{x})}^{6}$ 的展开式中的常数项.

解答 解:∵(x2+3)•${(x-\frac{2}{x})}^{6}$=(x2+3)•(x6-12x4+60x2-160+240x-2-192x-4+64x-6 ),
∴它的展开式中常数项为240+3×(-160)=-240,
故答案为:-240.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设动点P(t,0),Q(1,t),其中参数t∈[0,1],则线段PQ扫过的平面区域的面积是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.掷两颗均匀骰子,已知第一颗掷出6点条件下,则“掷出点数之和不小于10”的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“ab≥0”是“$\frac{a}{b}$≥0”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不是充分条件也不是必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,已知P,Q是正方体ABCD-A1B1C1D1的面A1B1BA和面ABCD的中心.
(1)求证:PQ∥平面BCC1B1
(2)求直线PQ与平面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值:
(1)2${\;}^{lo{g}_{2}3}$;(2)4${\;}^{3+lo{g}_{4}5}$;(3)3${\;}^{2lo{g}_{3}2}$+1;(4)9${\;}^{lo{g}_{3}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,已知下列条件,解三角形:
(1)a=10,b=20,A=80°;
(2)b=10,c=5$\sqrt{6}$,C=60°;
(3)a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知ABC-A1B1C1是各棱长均等于a的正三棱柱,D是侧棱CC1的中点,则直线AD与平面ABB1A1所成角的正弦值是$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex•[-x2+(4a+2)x-3a2-4a-2],其中e为自然对数的底数.
(1)当a≠0时,试求函数f(x)的单调区间;
(2)当0<a<1时,记函数f(x)的导函数为f′(x),若x∈[1-a,1+a]时,恒有|f′(x)|≤a•ex成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案