精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=sinx-xcosx.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)求证:当$x∈(0\;,\;\frac{π}{2})$时,$f(x)<\frac{1}{3}{x^3}$;
(Ⅲ)若f(x)>kx-xcosx对$x∈(0\;,\;\frac{π}{2})$恒成立,求实数k的最大值.

分析 (Ⅰ)求出函数的导数,计算f′(π),f(π),求出切线方程即可;
(Ⅱ)令g(x)=f(x)-$\frac{1}{3}$x3,$x∈(0\;,\;\frac{π}{2})$,求出g(x)的单调性,从而证出结论;
(Ⅲ)问题转化为k<$\frac{sinx}{x}$对$x∈(0\;,\;\frac{π}{2})$恒成立,令m(x)=$\frac{sinx}{x}$,$x∈(0\;,\;\frac{π}{2})$,根据函数的单调性求出k的最大值即可.

解答 解:(Ⅰ)f(x)=sinx-xcosx,f′(x)=xsinx,
f′(π)=0,f(π)=π,
故切线方程是y-π=0;
(Ⅱ)证明:令g(x)=f(x)-$\frac{1}{3}$x3,$x∈(0\;,\;\frac{π}{2})$,
g′(x)=x(sinx-x),令h(x)=sinx-x,h′(x)=cosx-1<0,
∴h(x)在$x∈(0\;,\;\frac{π}{2})$递减,故h(x)<h(0)=0,
∴g′(x)<0,g(x)递减,
∴g(x)<g($\frac{π}{2}$)=$\frac{24{-π}^{3}}{24}$<0,
故当$x∈(0\;,\;\frac{π}{2})$时,$f(x)<\frac{1}{3}{x^3}$成立;
(Ⅲ)若f(x)>kx-xcosx对$x∈(0\;,\;\frac{π}{2})$恒成立,
即k<$\frac{sinx}{x}$对$x∈(0\;,\;\frac{π}{2})$恒成立,
令m(x)=$\frac{sinx}{x}$,$x∈(0\;,\;\frac{π}{2})$,
m′(x)=$\frac{xcosx-sinx}{{x}^{2}}$<0,
∴m(x)在(0,$\frac{π}{2}$)递减,
m(x)>m($\frac{π}{2}$)=$\frac{2}{π}$,
故k≤$\frac{2}{π}$.k的最大值是$\frac{2}{π}$.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及函数恒成立,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ex,g(x)=kx+1.
(I)求函数y=f(x)-(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若对于任意x∈(0,+∞),|f(x)-g(x)|>x恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,已知P,Q是正方体ABCD-A1B1C1D1的面A1B1BA和面ABCD的中心.
(1)求证:PQ∥平面BCC1B1
(2)求直线PQ与平面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,已知下列条件,解三角形:
(1)a=10,b=20,A=80°;
(2)b=10,c=5$\sqrt{6}$,C=60°;
(3)a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直平行六面体ABCD-A1B1C1D1的棱长均为2,∠BAD=60°,则平面A1DC1与平面ABCD所成角的大小为arcsin$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知ABC-A1B1C1是各棱长均等于a的正三棱柱,D是侧棱CC1的中点,则直线AD与平面ABB1A1所成角的正弦值是$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-$\frac{2}{m}$|+|2x+m|(m>0).
(Ⅰ)证明:f(x)≥2$\sqrt{2}$;
(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2-$\frac{1}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)的图象关于点(0,1)对称,当x≥0时,f(x)=log2x,若f(a)>f(-a)+2,则a的取值范围是(-1,0)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.

查看答案和解析>>

同步练习册答案