精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)的图象关于点(0,1)对称,当x≥0时,f(x)=log2x,若f(a)>f(-a)+2,则a的取值范围是(-1,0)∪(4,+∞).

分析 由题意可得当x<0时,f(x)=2-log2(-x),然后分a>0和a<0两种情况分别求出a的范围,最后求其并集即可得解.

解答 解:∵x≥0时,f(x)=log2x,函数f(x)的图象关于点(0,1)对称,
∴当x<0时,f(x)=2-log2(-x),
当a>0时,log2a>2-log2a+2,可得:log2a>2,解得:a>4,
当a<0时,2-log2(-a)>log2(-a)+2,即:log2(-a)<0=log21,可得:0<-a<1,
当a=0时,f(0)=log20无意义,
综上,可得:a∈(-1,0)∪(4,+∞).
故答案为:(-1,0)∪(4,+∞).

点评 本题通过不等式的求解考查了对数函数的图象和性质,同时考查了转化思想和分类讨论思想以及学生的基本运算能力,是高考热点内容,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ln x-cx(c∈R)
(1)讨论函数f(x)的单调性.
(2)若f(x)≤x2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sinx-xcosx.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)求证:当$x∈(0\;,\;\frac{π}{2})$时,$f(x)<\frac{1}{3}{x^3}$;
(Ⅲ)若f(x)>kx-xcosx对$x∈(0\;,\;\frac{π}{2})$恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-x2,g(x)=(λ-1)x2+2(λ-1)x-2.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)a=2时,有f(x)≤g(x)恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x3-3ax2-9a2x+a3.若a>$\frac{1}{4}$,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为(  )
A.($\frac{1}{4}$,$\frac{4}{5}$]B.($\frac{1}{4}$,1]C.[-$\frac{1}{3}$,1]D.[0,$\frac{4}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a为非零实数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:$\frac{f(β)}{α}$<$\frac{1}{2}$.(参考数据:ln2≈0.693)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线$\left\{\begin{array}{l}{x=1+t}\\{y=-4+t}\end{array}\right.$(t为参数)过圆锥曲线$\left\{\begin{array}{l}{x=\frac{a}{cosθ}}\\{y=3tanθ}\end{array}\right.$(θ为参数,a>0)的右焦点,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设ω∈(0,10],则函数y=sinωx在区间(-$\frac{π}{3}$,$\frac{π}{6}$)上是增函数的概率是$\frac{3}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=30,Dξ=20,则p等于(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案