精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x3-3ax2-9a2x+a3.若a>$\frac{1}{4}$,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,则a的取值范围为(  )
A.($\frac{1}{4}$,$\frac{4}{5}$]B.($\frac{1}{4}$,1]C.[-$\frac{1}{3}$,1]D.[0,$\frac{4}{5}$]

分析 问题转化为求导函数的绝对值在x∈[1,4a]上的最大值即可.

解答 解:f′(x)=3x2-6ax-9a2的图象是一条开口向上的抛物线,关于x=a对称.
若$\frac{1}{4}$<a≤1,则f′(x)在[1,4a]上是增函数,
从而(x)在[1,4a]上的最小值是f′(1)=3-6a-9a2,最大值是f′(4a)=15a2
由|f′(x)|≤12a,得-12a≤3x2-6ax-9a2≤12a,于是有3-6a-9a2≥-12a,且f′(4a)=15a2≤12a.
由f′(1)≥-12a得-$\frac{1}{3}$≤a≤1,由f′(4a)≤12a得0≤a≤$\frac{4}{5}$.
所以a∈($\frac{1}{4}$,1]∩[-$\frac{1}{3}$,1]∩[0,$\frac{4}{5}$],即a∈($\frac{1}{4}$,$\frac{4}{5}$].
若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立.
所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是($\frac{1}{4}$,$\frac{4}{5}$],
故选:A.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为:ρ=$\frac{1}{1-cosθ}$(其中θ≠2kπ,ρ>0),A,B是曲线C上的两个动点,且OA⊥OB.
(1)求曲线C的直角坐标方程;
(2)求$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直平行六面体ABCD-A1B1C1D1的棱长均为2,∠BAD=60°,则平面A1DC1与平面ABCD所成角的大小为arcsin$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-$\frac{2}{m}$|+|2x+m|(m>0).
(Ⅰ)证明:f(x)≥2$\sqrt{2}$;
(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2-$\frac{1}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),过右焦点且垂直于x轴的直线截椭圆所得弦长是1.
(1)求椭圆C的标准方程;
(2)设点A,B分别是椭圆C的左,右顶点,过点(1,0)的直线l与椭圆交于M,N两点(M,N与A,B不重合),证明:直线AM和直线BN交点的横坐标为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)的图象关于点(0,1)对称,当x≥0时,f(x)=log2x,若f(a)>f(-a)+2,则a的取值范围是(-1,0)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设参数方程$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=-1+sinθ}\end{array}\right.$($\frac{π}{2}$<θ≤π)表示的曲线(  )
A.与x轴、y轴都相交B.与x轴相交,与y轴不相交
C.与x轴不相交,与y轴相交D.与x轴、y轴都不相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆的长轴长与短轴长之和等于其焦距的$\sqrt{3}$倍,且一个焦点的坐标为($\sqrt{3}$,0),则椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{y^2}{4}$+x2=1C.$\frac{y^2}{8}$+$\frac{x^2}{5}$=1D.$\frac{x^2}{8}$+$\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x}-2,x>a\\-{x^2}-4x,x≤a\end{array}$,若函数f(x)在定义域上有三个零点,则实数a的取值范围是(  )
A.(1,+∞)B.[0,+∞)C.[0,1]D.[0,1)

查看答案和解析>>

同步练习册答案