精英家教网 > 高中数学 > 题目详情
3.在△ABC中,∠BAC=135°,BC边上的高为1,则|BC|的最小值为2+2$\sqrt{2}$.

分析 在△ABC中,由余弦定理有:BC2=AB2+AC2-2AB•ACcos135°=AB2+AC2+$\sqrt{2}$AB•AC=(AB-AC)2+AB•AC(2+$\sqrt{2}$)
因此:当AB=AC时,BC2有最小值,即BC有最小值,最小值是AB•$\sqrt{2+\sqrt{2}}$,求出AB,即可得出结论.

解答 解:在△ABC中,由余弦定理有:
BC2=AB2+AC2-2AB•ACcos135°=AB2+AC2+$\sqrt{2}$AB•AC=(AB-AC)2+AB•AC(2+$\sqrt{2}$)
因此:当AB=AC时,BC2有最小值,即BC有最小值,最小值是AB•$\sqrt{2+\sqrt{2}}$.
所以:此时根据勾股定理有AB2=1+($\frac{1}{2}$AB•$\sqrt{2+\sqrt{2}}$)2
求得:AB=$\frac{2}{\sqrt{2-\sqrt{2}}}$,
所以:BC=2+2$\sqrt{2}$.
故答案为:2+2$\sqrt{2}$.

点评 本题考查余弦定理的运用,考查学生的计算能力,正确运用余弦定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设总体X~N(μ,σ 2),X1,X2,…,Xn是一个样本,$\overline{X}$,S2分别为样本均值和样本方差,试证:E[($\overline{X}$S22]=($\frac{{σ}^{2}}{n}$+μ2)(+$\frac{2{σ}^{4}}{n-1}$+σ4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一块正方形薄铁片的边长为4cm,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积等于$\frac{\sqrt{15}}{3}$πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.目前我国很多城市出现了雾霾天气,已经给广大人民的健康带来影响,其中汽车尾气排放是造成雾霾天气的重要因素之一,很多城市提倡绿色出行方式,实施机动车尾号限行.某市为了解民众对“车辆限行”的态度,随机调查了50人,并半调查结果制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数469634
(1)若从年龄在[55,65)的被调查者中随机选取2人进行跟踪调查,求恰有1名不赞成“车辆限行”的概率;
(2)把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年,请根据上表完成2×2列联表,并说明民众对“车辆限行”的态度与年龄是否有关联.
态度
年龄
赞成不赞成总计
中青年
中老年
总计
参考公式和数据:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
X2≤2.706>2.706>3.841>6.635
A、B关联性无关联90%95%99%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{-1}^{1}$(sinx+x2)dx=(  )
A.0B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)与直线y=2的相邻两个交点的距离为π,且f(x)-f(-x)=0,若g(x)=sin(ωx+φ),则(  )
A.y=g(x)在(0,$\frac{π}{2}$)上递减B.y=g(x)在(0,$\frac{π}{6}$)上递减
C.y=g(x)在(0,$\frac{π}{2}$)上递增D.y=g(x)在(0,$\frac{π}{6}$)上递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,某人从第1个格子开始,每次可向前跳1格或2格,那么此人跳到第10个格子的方法种数为(  )
12345678910
A.13种B.21种C.34种D.55种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知程序框图如图所示,则该程序框图的功能是(  )
A.求数列{$\frac{1}{n}$}的前11项和(n∈N*B.求数列{$\frac{1}{2n}$}的前11项和(n∈N*
C.求数列{$\frac{1}{n}$}的前12项和(n∈N*D.求数列{$\frac{1}{2n}$的前12项和(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若四边形ABCD满足:$\overrightarrow{AB}$+$\overrightarrow{CD}$=0,($\overrightarrow{AB}$+$\overrightarrow{DA}$)•$\overrightarrow{AC}$=0,则该四边形的形状是菱形.

查看答案和解析>>

同步练习册答案