精英家教网 > 高中数学 > 题目详情
15.为考察某种药物预防疾病的效果,对100只某种动物进行试验,得到如下的列联表:
患者未患者合计
服用药104050
没服用药203050
合计3070100
经计算,统计量K2的观测值k≈4.762,则在犯错误的概率不超过(  )的前提下认为药物有效,已知独立性检验中统计量K2的临界值参考表为:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
A.0.005B.0.05C.0.010D.0.025

分析 题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于3.841,在犯错误的概率不超过0.05的前提下,认为药物有效.

解答 解:由题意算得,k2=4.762>3.841,参照附表,可得
在犯错误的概率不超过0.05的前提下,认为药物有效.
故选B.

点评 本题考查独立性检验的应用,本题有创新的地方就是给出了观测值,只要进行比较就可以,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{10}cosθ}\\{y=-1+\sqrt{10}sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{{\begin{array}{l}{x=1+2t}\\{y=1+t}\end{array}}\right.$(t为参数),则直线l与曲线C截得的弦长为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3,x≤0\\|{2-lnx}|,x>0\end{array}\right.$,直线y=k与函数f(x)的图象相交于四个不同的点,交点的横坐标从小到大依次记为a,b,c,d,则abcd的取值范围是(  )
A.[0,e2]B.[0,e2C.[0,e4]D.[0,e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-ax+1)ex,x∈R.
(1)若函数f(x)的图象在(0,f(0))处的切线与直线x+y-3=0垂直,求实数a的值;
(2)求f(x)的单调区间;
(3)当a=2时,若对于任意x∈[-2,2],t∈[1,3],f(x)≥t2-2mt+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=$\sqrt{{x}^{2}-2x+a}$的定义域为R,则实数a的取值集合为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有48种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{201{5}^{(x+1)}+2017}{201{5}^{x}+1}$+2015sinx在x∈[-t,t]上的最大值为M,最小值为N,则M+N的值为(  )
A.0B.4032C.4030D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}为等差数列,且b1=a1,公差为$\frac{{a}_{2}}{{a}_{1}}$.当n≥3时,比较bn+1与1+b1+b2+…+bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln($\frac{1}{2}+\frac{1}{2}ax$)+x2-ax(a为常数,且a>0).
(Ⅰ)若x=$\frac{1}{2}$是函数f(x)的一个极值点,求a的值;
(Ⅱ)当0<a≤2时,判断f(x)在[$\frac{1}{2},+∞)$上的单调性,并加以证明;
(Ⅲ)若对任意的a∈(1+$\frac{1}{n+1}$,2)(n∈N+,且n为常数),总存在x0∈[$\frac{1}{2},1$],使不等式f(x0)>m(1-a2)成立(m为正实数),试比较m与$\frac{n+1}{4n+6}$的大小,并加以证明.

查看答案和解析>>

同步练习册答案