分析 (1)利用等差数列的通项公式及其求和公式即可得出.
(2)利用等差数列的定义通项公式及其求和公式即可得出.
解答 (1)解:∵S7=7,S15=75,∴$\left\{\begin{array}{l}{7{a}_{1}+\frac{7×6}{2}d=7}\\{15{a}_{1}+\frac{15×14}{2}d=75}\end{array}\right.$,
解得a1=-2,d=1.
(2)证明:由(1)得:an=-2+(n-1)=n-3.
Sn=$\frac{n(-2+n-3)}{2}$=$\frac{1}{2}{n}^{2}-\frac{5}{2}n$,则$\frac{{S}_{n}}{n}$=$\frac{1}{2}n$-$\frac{5}{2}$.
∴n≥2,$\frac{{S}_{n}}{n}$-$\frac{{S}_{n-1}}{n-1}$=$\frac{1}{2}n$-$\frac{5}{2}$-$\frac{1}{2}(n-1)-\frac{5}{2}$=$\frac{1}{2}$.
故数列{$\frac{{S}_{n}}{n}$}是等差数列,
∴Tn=$-2n+\frac{(n-1)n}{2}×\frac{1}{2}$=$\frac{1}{4}{n}^{2}$-$\frac{9n}{4}$.
点评 本题考查了等差数列的定义通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,4] | B. | (-∞,0]∪[4,+∞) | C. | [4,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∨q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5π | B. | 10π | C. | $\frac{5π}{3}$ | D. | $\frac{10π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{6\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{{6\sqrt{5}}}{5}$或$\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$或$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com