精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为t为参数),圆C的极坐标方程是.

1)求直线l与圆C的公共点个数;

2)在平面直角坐标系中,圆C经过伸缩变换得到曲线,设为曲线上一点,求的最大值,并求相应点M的坐标.

【答案】11;(25.

【解析】

1)首先将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程,然后求出圆心到直线的距离即可.

2)首先得到曲线的参数方程是,然后,然后利用三角函数的知识即可求出答案.

1)直线l的参数方程t为参数)化为普通方程是

C的极坐标方程化为直角坐标方程是

∵圆心到直线l的距离为,等于圆的半径r

∴直线l与圆C的公共点的个数是1

2)圆C的参数方程是

∴曲线的参数方程是

时,取得最大值5

此时M的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={(xy)|(x34cosq2+(y54sinq2=4θR},B={(xy)|3x+4y19=0}.记集合P=AB,则集合P所表示的轨迹的长度为( )

A.8B.8C.8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,过点的直线交椭圆于两点,当直线的下顶点时,的斜率为,当直线垂直于的长轴时,的面积为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当时,求直线的方程;

(Ⅲ)若直线上存在点满足成等比数列,且点在椭圆外,证明:点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,平面分别为线段上的点,且

I)证明:平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离与到定点的距离之比为.

1)求点的轨迹的方程;

2)已知点,在轴上是否存在一点,使得曲线上另有一点,满足,且?若存在,求出所有符合条件的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20201月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称强基计划.强基计划聚焦高端芯片与软件智能科技新材料先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,下图是我国2011-2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(.

1)求2015年至2019年这5年的新材料产业市场规模的平均数;

2)从2012年至2019年中随机挑选一年,求该年新材料产业市场规模较上一年的年增加量不少于6000亿元的概率;

3)由图判断,从哪年开始连续三年的新材料产业市场规模年增长率的方差最大.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:

(1)估计该校男生的人数;并求出

(2)估计该校学生身高在之间的概率;

(3)从样本中身高在之间的女生中任选2人,求至少有1人身高在之间的概率。

查看答案和解析>>

同步练习册答案