【题目】已知集合A={(x,y)|(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4,θ∈R},B={(x,y)|3x+4y﹣19=0}.记集合P=A∩B,则集合P所表示的轨迹的长度为( )
A.8B.8C.8D.8
【答案】A
【解析】
由圆(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4的圆心为(3+4cosq,5+4sinq),可知其圆心的轨迹方程为(x﹣3)2+(y﹣5)2=16,易知动圆(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4所形成的图形为圆环,利用垂径定理结合图像,即可得解.
集合A={(x,y)|(x﹣3﹣4cosq)2+(y﹣5﹣4sinq)2=4,θ∈R},
圆的圆心(3+4cosq,5+4sinq),半径为2,
所以圆的圆心的轨迹方程为:(x﹣3)2+(y﹣5)2=16,
如图:
集合A的图形是图形中两个圆中间的圆环部分,
圆心C(3,5)到直线3x+4y﹣19=0的距离为:d2,
所以,A∩B就是|MN|=228.
故选:A.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C﹣PBD的体积等于 时,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,垂直于所在的平面,为的直径,是弧上的一个动点(不与端点重合),为上一点,且是线段上的一个动点(不与端点重合).
(1)求证:平面;
(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程及直线的普通方程;
(2)设直线与曲线交于,两点(点在点左边)与直线交于点.求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有限数列,定义集合为数列的伴随集合.
(Ⅰ)已知有限数列和数列.分别写出和的伴随集合;
(Ⅱ)已知有限等比数列,求的伴随集合中各元素之和;
(Ⅲ)已知有限等差数列,判断是否能同时属于的伴随集合,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:1(a0,b0)的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(lnx2)1在定义域(0,2)内有两个极值点.
(1)求实数a的取值范围;
(2)设x1和x2是f(x)的两个极值点,求证:lnx1+lnx2+lna0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是.
(1)求直线l与圆C的公共点个数;
(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线,设为曲线上一点,求的最大值,并求相应点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com