精英家教网 > 高中数学 > 题目详情
1.设函数f(x)(x∈R)满足f(x+2)=f(x)+2.当0≤x<2时,f(x)=1,则f(2016)的值为2017.

分析 根据递推式f(x+2)=f(x)+2进行递推,结合当0≤x<2时,f(x)=1,从而可求出所求

解答 解:因为f(x+2)=f(x)+2,
所以f(2016)=f(2014)+2=f(2012)+4=f(2010)+6=…=f(0)+2016,
而当0≤x<2时,f(x)=1,
则f(2016)=1+2016=2017.
故答案为:2017

点评 本题主要考查函数值的计算,根据条件利用递推法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.三段论演绎 (1)因为菱形是平行四边形,(2)四边形ABCD是菱形,(3)所以四边形ABCD是平行四边形,以上三段论演绎中“小前提”是(  )
A.(1)B.(2)C.(3)D.(1)(2)(3)都是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{ax}{1+{x}^{2}}$+1(a≠0).
(Ⅰ)若函数f(x)图象在点(0,1)处的切线方程为x-2y+1=0,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x2+3x+a)的值域为R,则a的取值范围为(0,1)∪(1,$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|x∈Z|x≤3},N={x|1≤ex≤e},则M∩N等于(  )
A.B.{0}C.{0,1}D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_2}({x+1})}}$的定义域是(  )
A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设直角坐标平面上的三点为O(0,0),A(5,0),B(0,t),(t≠0),点P是线段AB上的动点,则$\overrightarrow{OP}$•$\overrightarrow{OA}$≥10的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(x-1)-kx+k+1.
(Ⅰ)当k=1时,证明:f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)证明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+…+$\frac{lnn}{n+1}$<$\frac{{n}^{2}-n}{4}$(n∈N*,且n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点(1,1)的直线与圆x2+y2=4相交于A、B两点,则|AB|的最小值为(  )
A.$2\sqrt{2}$B.2$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案