【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为
射线
交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
【答案】(1)曲线
的直角坐标方程为
;直线
的参数方程为
(
为参数))(2)当
时,
取得最小值为![]()
【解析】
(1)由
求得曲线
的直角坐标方程;先求出曲线
与直线
的交点
的坐标,即可得到
的中点
,进而求解即可;
(2)由(1),将直线
的参数方程代入到曲线
的直角坐标方程中,由参数的几何意义可得
,进而求解即可.
(1)由题,因为
,即
,
因为
,
所以
,即
,
则曲线
的直角坐标方程为
,
因为射线
交曲线
于点
,所以点
的极坐标为
,
则点
的直角坐标为
,所以
的中点
为
,
所以倾斜角为
且过点
的直线
的参数方程为
(
为参数).
(2)将直线
的参数方程
(
为参数)代入曲线
的方程
中,
整理可得
,
设
、
对应的参数值分别是
、
,则有
,
则
,
因为
,当
,即
时,
取得最小值为![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中.直线1的参数方程为
(t为参数).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=2cosθ.
(1)若曲线C关于直线l对称,求a的值;
(2)若A、B为曲线C上两点.且∠AOB
,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:
分组 |
|
|
|
|
|
频数 | 3 | 11 | 18 | 12 | 6 |
(1)根据频数分布表计算成绩在
的频率并计算这组数据的平均值
(同组的数据用该组区间的中点值代替);
(2)用分层抽样的方法从成绩在
和
的学生中共抽取5人,从这5人中任取2人,求成绩在
和
中各有1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=exsinx,g(x)为f(x)的导函数,
(1)求f(x)的单调区间;
(2)当x∈[
,π],证明:f(x)+g(x)(π﹣x)≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人沿固定路线开车上班,沿途共有
个红绿灯,他对过去
个工作日上班途中的路况进行了统计,得到了如表的数据:
上班路上遇见的红灯数 |
|
|
|
|
|
|
天数 |
|
|
|
|
|
|
若一路绿灯,则他从家到达公司只需用时
分钟,每遇一个红灯,则会多耗时
分钟,以频率作为概率的估计值
(1)试估计他平均每天上班需要用时多少分钟?
(2)若想以不少于
的概率在早上
点前(含
点)到达公司,他最晚何时要离家去公司?
(3)公司规定,员工应早上
点(含
点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款
元.因某些客观原因,在接下来的
个工作日里,他每天早上只能
从家出发去公司,求他因迟到而被罚款的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有
位学生申请
、
、
三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有
人申请
大学的概率;
(2)求被申请大学的个数
的概率分布列与数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点
,
,上顶点为
,
,
为椭圆上任意一点,且
的面积最大值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
.
为椭圆
上的两个不同的动点,且
(
为坐标原点),则是否存在常数
,使得
点到直线
的距离为定值?若存在,求出常数
和这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn=2n+1﹣2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn
,求数列{cn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com