【题目】数列{an}的前n项和为Sn=2n+1﹣2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn
,求数列{cn}的前n项和Tn.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为
射线
交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线
上任意一点
向
轴作垂线段垂足为
,点
是线段
上的一点,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与轨迹
交于
两点,点
为轨迹
上异于
的任意一点,直线
分别与直线
交于
两点.问:
轴正半轴上是否存在定点使得以
为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的导函数为
,且对任意的实数
都有
(
是自然对数的底数),且
,若关于
的不等式
的解集中恰有唯一一个整数,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0)的焦点为(0,1)
(1)求抛物线C的方程;
(2)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=﹣1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,其中
N
,
≥2,且
R.
(1)当
,
时,求函数
的单调区间;
(2)当
时,令
,若函数
有两个极值点
,
,且
,求
的取值范围;
(3)当
时,试求函数
的零点个数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=4x,直线l交于A,B两点,O为坐标原点,直线OA,OB的斜率分别为k1,k2,若k1k2=﹣2,则△AOB面积的最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com