精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,an+1=-an+(-1)n
(1)设bn=
an
(-1)n
,证明{bn}是等差数列;
(2)求数列{an}的前n项和Sn
考点:等差关系的确定,数列的求和
专题:综合题,等差数列与等比数列
分析:(1)利用等差数列的定义,进行证明即可;
(2)确定数列{an}的通项.再分类求和.
解答: (1)证明:∵bn+1-bn=
an+1
(-1)n+1
-
an
(-1)n
=-1,
∴{bn}是等差数列;
(2)解:由(1)知bn=-n,∴an=(-1)n+1n.
n为偶数时,Sn=-
n
2

n为奇数时,Sn=Sn-1+n=
n+1
2
点评:本题考查等差数列的定义,考查数列的求和,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)=16x3-20ax2+8a2x-a3,其中a≠0,求f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2+a
(a≠0)
(1)当a=1时,求f(x)的极值;
(2)若存在x0∈(0,1),使f′(x0)-[f(x0)]2=0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-lnx,a∈R.
(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)f(x)在x=1处有极值,求f(x)的单调递增区间;
(Ⅲ)若f(x)在区间(0,e]的最小值是3,求出a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x+1

(Ⅰ)设g(x)=f(x)•1nx,判断函数g(x)在(0,+∞)上是否存在极大值,并说明理由.
(Ⅱ)如图,曲线y=f(x)在点Q(0,1)处的切线与x轴交于点P1,过点P1作x轴的垂线交曲线于点Q1;曲线在点Q1处的切线与x轴交于点P2,过点P2作x轴的垂线交曲线于点Q2;依次重复上述过程得到点列:P1,P2,P3,…,Pn(n∈N*),设点Pn的坐标为(an,0),求数列{an}的通项公式,并证明:
1
a1
+
1
a2
+…+
1
an
3
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx),设f(x)=
a
b

(1)求函数f(x)的最小正周期及单调增区间;
(2)当x∈[-
π
4
π
4
]时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
8
x2+lnx+2,g(x)=x.
(Ⅰ)求函数F(x)=f(x)-2•g(x)的极值点;
(Ⅱ)若函数F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值;
(Ⅲ)若bn=g(n)
1
g(n+1)
(n∈N*),试问数列{bn}中是否存在bn=bm(m≠n)?若存在,求出所有相等的两项;若不存在,请说明理由.(e为自然对数的底数约为2.718).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-
2
1+5x

(1)是否存在实数m,使f(x)是奇函数?若存在,求出m的值;若不存在,给出证明.
(2)当-1≤x≤2时,f(x)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,3),
b
=(x,-6),若
a
b
,则实数x的值为
 

查看答案和解析>>

同步练习册答案