精英家教网 > 高中数学 > 题目详情
19.边长为1的正方形ABCD中,$|\overrightarrow{AB}+\overrightarrow{BC}|$=(  )
A.2B.$\sqrt{2}$C.1D.2$\sqrt{2}$

分析 根据平面向量的平行四边形法则得到所求为矩形的对角线长度.

解答 解:边长为1的正方形ABCD中,$|\overrightarrow{AB}+\overrightarrow{BC}|$=$\sqrt{2}|\overrightarrow{AB}|$=$\sqrt{2}$;
故选:B.

点评 本题考查了平面向量的平行四边形法则的运用;解答本题的关键是明确所求的几何意义是正方形的对角线长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,P为椭圆上一点且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=c2,则此椭圆离心率的取值范围是[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若(2x-$\frac{1}{x}$)n展开式中含$\frac{1}{{x}^{2}}$项的系数与含$\frac{1}{{x}^{4}}$项的系数之比为-5,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正项等比数列{an}满足:a6=a5+2a4,若存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=2a1,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.6B.5C.$\frac{28}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x+y+1=0的倾斜角和在y轴上的截距分别为(  )
A.135°,-1B.135°,1C.45°,-1D.45°,1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知($\root{3}{x}$+x22n的展开式的系数和比(3x-1)n的展开式的系数和大992.求在(2x-$\frac{1}{x}$)2n的展开式中:
(1)常数项(用数字表示);
(2)二项式系数最大的项..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设P(2,y)为角α的终边上一点,且cosα=$\frac{{\sqrt{2}}}{y}$,则tanα=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=\left\{\begin{array}{l}\sqrt{4-{x^2}}-2,({-2≤x<0})\\|{{x^2}-x}|,({0≤x≤2})\end{array}\right.$的图象与x轴以及x=±2所围成的封闭图形的面积为(  )
A.1+πB.5-πC.π-3D.1-π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点P(a,b)在直线x+2y=4的第一象限的部分上,则log2a+log2b的最大值是(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案