精英家教网 > 高中数学 > 题目详情
18.在△ABC中,a=$\sqrt{3}$,b=3,sinC=2sinA,则cosA=$\frac{{\sqrt{3}}}{2}$.

分析 sinC=2sinA,利用正弦定理可得c=2a=2$\sqrt{3}$,再利用余弦定理即可得出.

解答 解:在△ABC中,∵sinC=2sinA,∴c=2a=2$\sqrt{3}$
则cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{3}^{2}+(2\sqrt{3})^{2}-(\sqrt{3})^{2}}{2×3×2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列函数中,在定义域内是减函数的是(  )
A.f(x)=xB.f(x)=$\sqrt{x}$C.f(x)=$\frac{1}{{2}^{x}}$D.f(x)=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果sin(π-A)=$\frac{1}{2}$,那么cos($\frac{π}{2}$-A)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数)10111213
通过公路l的频数20402020
通过公路2的频数10404010
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)离心率e=$\frac{{\sqrt{2}}}{2}$,准线方程为x=2$\sqrt{2}$,左、右焦点分别为F1,F2
(1)求椭圆C的方程
(2)已知点P(${\sqrt{2}$,1)点M在线段PF2上,且MF1+MF2=3,F1M延长线交椭圆于点Q,求$\frac{{{S_{△MP{F_1}}}}}{{{S_{△MQ{F_2}}}}}$;
?(3)点A、B为椭圆C上动点,PA、PB斜率分别为k1,k2,当k1k2=-$\frac{1}{2}$时,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,平面上有四个点A、B、P、Q,其中A、B为定点,且AB=$\sqrt{3}$,P、Q为动点,满足AP=PQ=QB=1,又△APB和△PQB的面积分别为S和T,则S2+T2的最大值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示正方形O'A'B'C'的边长为2cm,它是一个水平放置的一个平面图形的直观图,则原图形的面积是4$\sqrt{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A={x|x2+3x-10≤0},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b是两条不同的直线,α、β是两个不同的平面,下列说法中正确的是(  )
A.若a∥b,a∥α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥β
C.若α⊥β,a⊥β,则a∥αD.若α⊥β,a∥α,则a⊥β

查看答案和解析>>

同步练习册答案