精英家教网 > 高中数学 > 题目详情
2.北京市2016年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是(  )
A.第一季度B.第二季度C.第三季度D.第四季度

分析 根据方差是描述数据波动性大小的量,由图得出第二季度中PM2.5的平均浓度指数方差最小.

解答 解:根据图中数据知,第一季度的数据是72.25,43.96,93.13;
第二季度的数据是66.5,55.25,58.67;
第三季度的数据是59.36,38.67,51.6;
第四季度的数据是82.09,104.6,168.05;
观察得出第二季度的数据波动性最小,所以第二季度的PM2.5平均浓度指数方差最小.
故选:B.

点评 本题考查了方差的概念与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数$f(x)=\frac{{1+{e^x}}}{{1-{e^x}}}$(其中e是自然对数的底数)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z-i=1+i,则|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A=2B,2a=3b,则cosB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于无穷数列{an},记T={x|x=aj-ai,i<j},若数列{an}满足:“存在t∈T,使得只要am-ak=t(m,k∈N*且m>k),必有am+1-ak+1=t”,则称数列{an}具有性质P(t).
(Ⅰ)若数列{an}满足${a_n}=\left\{{\begin{array}{l}{2n,n≤2}\\{2n-5,n≥3}\end{array}}\right.$判断数列{an}是否具有性质P(2)?是否具有性质P(4)?
(Ⅱ)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(Ⅲ)已知{an}是各项为正整数的数列,且{an}既具有性质P(2),又具有性质P(5),求证:存在整数N,使得aN,aN+1,aN+2,…,aN+k,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设D为不等式(x-1)2+y2≤1表示的平面区域,直线x+$\sqrt{3}$y+b=0与区域D有公共点,则b的取值范围是-3≤b≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,圆ρ=sinθ的圆心的极坐标是(  )
A.$(\;1,\;\;\frac{π}{2})$B.(1,0)C.$(\;\frac{1}{2},\;\;\frac{π}{2}\;)$D.$(\;\frac{1}{2},\;\;0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线l:kx+y-$\sqrt{2}$k=0与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行,且这两条平行线间的距离为$\frac{4}{3}$,则双曲线C的离心率为(  )
A.2B.2$\sqrt{2}$C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=4x与曲线y=x2围成的封闭区域面积为$\frac{32}{3}$.

查看答案和解析>>

同步练习册答案