精英家教网 > 高中数学 > 题目详情
10.在△ABC中,A=2B,2a=3b,则cosB=$\frac{3}{4}$.

分析 利用正弦定理化简2a=3b,将A=2B代入,利用二倍角的正弦函数公式化简,根据sinB不为0,确定出cosB的值即可.

解答 解:由正弦定理化简2a=3b得:2sinA=3sinB,
把A=2B代入得:2sin2B=3sinB,即4sinBcosB=3sinB,
∵sinB≠0,
∴4cosB=3,即cosB=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$

点评 此题考查了正弦定理、余弦定理,以及二倍角的正弦函数公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知角A,B,C为等腰△ABC的内角,设向量$\overrightarrow{m}$=(2sinA-sinC,sinB),$\overrightarrow{n}$=(cosC,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$,BC=$\sqrt{7}$
(Ⅰ)求角B;
(Ⅱ)在△ABC的外接圆的劣弧$\widehat{AC}$上取一点D,使得AD=1,求sin∠DAC及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=1nx-$\frac{1}{e^2}$x+a有零点,则实数a的取值范围是(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个底面积为1的正四棱柱的顶点都在同一球面上,若此球的表面积为20π,则该四棱柱的高为(  )
A.$\sqrt{3}$B.2C.3$\sqrt{2}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆x2+y2-2y=0与曲线y=|x|-1的公共点个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知动点M到点N(1,0)和直线l:x=-1的距离相等.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)已知不与l垂直的直线l'与曲线E有唯一公共点A,且与直线l的交点为P,以AP为直径作圆C.判断点N和圆C的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.北京市2016年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是(  )
A.第一季度B.第二季度C.第三季度D.第四季度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.阅读如图所示的程序框图,运行相应的程序,若输入m=168,n=72,则输出m的值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的通项公式为an=$\frac{n•{3}^{n}}{{3}^{n}-1}$(n≥1,n∈N*).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求证:对任意的自然数n∈N*,不等式a1•a2…an<2•n!成立.

查看答案和解析>>

同步练习册答案