精英家教网 > 高中数学 > 题目详情
11.已知α为锐角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,则tanα=$\frac{3}{4}$.

分析 由已知利用诱导公式可求sinα,利用同角三角函数基本关系式即可求得cosα,tanα的值.

解答 解:∵α为锐角,且cos($\frac{π}{2}$+α)=-sinα=-$\frac{3}{5}$,
∴sinα=$\frac{3}{5}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知当x∈R,[x]表示不超过x的最大整数,称y=[x]为取整函数,例如[1.2]=1,[-2.3]=-3,若f(x)=[x],且偶函数g(x)=-(x-1)2+1(x≥0),则方程f(f(x))=g(x)的所有解之和为(  )
A.1B.-2C.$\sqrt{5}-3$D.$-\sqrt{5}-3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1-{x}^{2}}{1+{x}^{2}}$.
( I)判断f(x)的奇偶性;          
( II)求证:f(x)+f($\frac{1}{x}$)为定值;
(III)求$f(\frac{1}{2017})$+$f(\frac{1}{2016})$+$f(\frac{1}{2015})$+f(1)+f(2015)+f(2016)+f(2017)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设α∈{1,2,3,$\frac{1}{2}$,-1},则使幂函数y=xα的定义域为R且为奇函数的所有α的值为(  )
A.-1,3B.-1,1C.1,3D.-1,1,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a=21.5,b=log${\;}_{\frac{1}{2}}$1.5,c=($\frac{1}{2}$)1.5,则a,b,c大小关系(  )
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x≤0}\\{f(x-1),x>0}\end{array}\right.$,则方程f(x)=x+2实根的个数是(  )
A.2B.3C.4D.4个以上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次不等式mx2-mx-1<0 的解集是全体实数,则m的取值范围是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.使得二项式(3x+$\frac{1}{{x\sqrt{x}}}$)n的展开式中含有常数项的最小的n为5.

查看答案和解析>>

同步练习册答案