精英家教网 > 高中数学 > 题目详情
19.设α∈{1,2,3,$\frac{1}{2}$,-1},则使幂函数y=xα的定义域为R且为奇函数的所有α的值为(  )
A.-1,3B.-1,1C.1,3D.-1,1,3

分析 写出幂函数的解析式,判断定义域与函数的奇偶性即可.

解答 解:α∈{1,2,3,$\frac{1}{2}$,-1},则幂函数y=xα的分别为:y=x,y=x2,y=x3,y=${x}^{\frac{1}{2}}$,y=x-1
显然y=x,y=x3,是定义域为R且为奇函数.
故选:C.

点评 本题考查幂函数的解析式以及函数的定义域,函数的奇偶性的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.四棱锥S-ABCD的底面是边长为2的正方形,顶点S在底面的射影是底面正方形的中心O,SO=2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为(  )
A.$\sqrt{2}+\sqrt{6}$B.$\sqrt{2}+\sqrt{3}$C.$\sqrt{3}+\sqrt{5}$D.$\sqrt{5}$+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f($\frac{1-x}{1+x}$)=x,则f(x)的表达式为(  )
A.$\frac{1-x}{1+x}$B.$\frac{1+x}{1-x}$C.$\frac{x-1}{x+1}$D.$\frac{2x}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{3}}{3}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\frac{4\sqrt{3}}{3}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题正确的是(  )
A.?x0∈R,x02+2x0+3=0B.x>1是x2>1的充分不必要条件
C.?x∈N,x3>x2D.若a>b,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范围(用集合表示).
(2)已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\sqrt{x}$+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α为锐角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,则tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知幂函数f(x)=(m2-3m+3)xm+1为偶函数,g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是a≤0或a≥3.

查看答案和解析>>

同步练习册答案