精英家教网 > 高中数学 > 题目详情
2.已知椭圆C的中心在坐标原点O,焦点在x轴上,长轴长为2$\sqrt{2}$,离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)若斜率为1的直线l与椭圆C交于A,B两点,以AB为底边作等腰三角形,顶点为P(-1,$\frac{2}{3}$),求△PAB的面积.

分析 (1)由题意可得a,c的值,再由隐含条件求得b,则椭圆方程可求;
(2)设出直线方程y=x+m,联立直线方程与椭圆方程,利用根与系数的关系结合AB⊥PM求得m,可得A,B的坐标,求出|AB|,再由点到直线的距离公式求出P到AB的距离,代入三角形面积公式得答案.

解答 解:(1)由题意得$\left\{\begin{array}{l}{2a=2\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\end{array}\right.$,解得a=$\sqrt{2}$,c=1,
又b2=a2-c2=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)设直线l的方程为y=x+m,
联立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得3x2+4mx+2m2-2=0.
设A(x1,y1),B(x2,y2),且x1<x2
AB中点M(x0,y0),则${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{2m}{3}$,${y}_{0}={x}_{0}+m=\frac{m}{3}$.
∵AB为等腰三角形PAB的底边,∴AB⊥PM,
又P(-1,$\frac{2}{3}$),∴${k}_{PM}=\frac{\frac{2}{3}-\frac{m}{3}}{-1+\frac{2m}{3}}=-1$,解得m=1.
此时方程3x2+4mx+2m2-2=0化为3x2+4x=0,
解得${x}_{1}=-\frac{4}{3}$,x2=0.
∴${y}_{1}=-\frac{1}{3}$,y2=1,则A($-\frac{4}{3},\frac{1}{3}$),B(0,1),
∴|AB|=$\sqrt{(-\frac{4}{3}-0)^{2}+(\frac{1}{3}-1)^{2}}=\frac{4\sqrt{2}}{3}$.
点P到直线AB的距离d=$\frac{|-1-\frac{2}{3}+1|}{\sqrt{2}}=\frac{\sqrt{2}}{3}$.∴${S}_{△PAB}=\frac{1}{2}•|AB|•d=\frac{4}{9}$.

点评 本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查点到直线距离公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在正方体ABCD-A1B1C1D1中挖去一个圆锥,得到一个几何体M,已知圆锥顶点为正方形ABCD的中心,底面圆是正方形A1B1C1D1的内切圆,若正方体的棱长为acm.
(1)求挖去的圆锥的侧面积;
(2)求几何体M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A-BCD为正四面体,则其侧面与底面所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\sqrt{5}$C.2$\sqrt{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,两条公路AP与AQ夹角A为钝角,其正弦值是$\frac{3}{5}$.甲乙两人从A点出发沿着两条公路进行搜救工作,甲沿着公路AP方向,乙沿着公路AQ方向.
(1)当甲前进5km的时候到达P处,同时乙到达Q处,通讯测得甲乙两人相距$\sqrt{58}$km,求乙在此时前进的距离AQ;
(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为$\frac{3π}{4}$(张角为∠QMP),求甲乙两人相距的距离MP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-ax,x∈R,其中a>0.
(1)若函数f(x)在R上的最小值是-1,求实数a的值;
(2)若存在两个不同的点(m,n),(n,m)同时在曲线f(x)上,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-x2-1,x∈R.
(1)求函数的图象在点(0,f(0))处的切线方程;
(2)当x∈R时,求证:f(x)≥x2+x;
(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$则z=2x+y的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-1≤0}\\{y≥-1}\end{array}\right.$,则z=2x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\sqrt{{{log}_{0.1}}(2x-1)}$的定义域为($\frac{1}{2},1$].

查看答案和解析>>

同步练习册答案