精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的首项a1=
1
4
,公比q=
1
4
,设bn+2=3log 
1
4
an(n∈N*),数列{cn}满足cn=anbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)求数列{cn}的前n项和Sn
(Ⅲ)对任意n∈N*,cn≤m2-m-
1
2
恒成立,求m的取值范围.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由题意知an=(
1
4
)n
,所以bn+2=3log
1
4
an
=3n,由此能求出bn=3n-2.
(Ⅱ)由cn=(3n-2)•(
1
4
)n
.利用错位相减法能求出数列{cn}的前n项和Sn
(3)由已知条件求出cn取最大值
1
4
,所以对任意n∈N*,cn≤m2-m-
1
2
恒成立,等价国土m2-m-
1
2
1
4
,由此能求出m的取值范围.
解答: 解:(Ⅰ)∵等比数列{an}的首项a1=
1
4
,公比q=
1
4

an=(
1
4
)n

bn+2=3log
1
4
an
=3n,
∴bn=3n-2.
(Ⅱ)∵an=(
1
4
)n
,bn=3n-2,∴cn=(3n-2)•(
1
4
)n

Sn=1×
1
4
+4×(
1
4
)2+…+(3n-2)×(
1
4
)n

1
4
Sn=1×(
1
4
)2+4×(
1
4
)2+…+(3n-2)×(
1
4
)n+1

两式相减,得
3
4
Sn=
1
4
+3×[(
1
4
)2+(
1
4
)3+…+(
1
4
)n]
-(3n-2)×(
1
4
)n+1

=
1
4
+
3
16
(1-
1
4n-1
)
1-
1
4
-(3n-2)×(
1
4
)n+1

=
1
2
-
1
4n
-(3n-2)×(
1
4
)n+1

Sn=
2
3
-
12n+8
3
×(
1
4
)n+1

(3)∵Cn+1-Cn=(3n+1)×(
1
4
)n+1-(3n-2)×(
1
4
)n
=9(1-n)×(
1
4
)n+1

当n=1时,c2=c1=
1
4

n≥2时,cn+1<cn
∴cn取最大值
1
4

∵对任意n∈N*,cn≤m2-m-
1
2
恒成立,
∴m2-m-
1
2
1
4
,解得m
1+
3
2
,或m
1+
3
2
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查实数的取值范围的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:函数y=log2(x2+2x-3)有意义,q:1<2x<4,r:(x-m+1)(x-m-1)<0
(Ⅰ)若p且q是真命题,求x的取值范围;
(Ⅱ)若p是r的必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示,观察图形,回答下列问题:
(1)79.5~89.5这一组的频率、频数分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格)
(3)从60名学生中抽取4名,再从中抽2名,求恰好有1名是及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

重庆市某知名中学高三年级甲班班主任近期对班上每位同学的成绩作相关分析时,得到石周卓婷同学的某些成绩数据如下:
第一次考试 第二次考试 第三次考试 第四次考试
数学总分 118 119 121 122
总分年级排名 133 127 121 119
(1)求总分年级名次对数学总分的线性回归方程y=bx+a;(必要时用分数表示)
(2)若石周卓婷同学想在下次的测试时考入前100名,预测该同学下次测试的数学成绩至少应考多少分(取整数,可四舍五入).附:线性回归方程y=bx+a中,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体A-BCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°.点E在BD上,且DE=
1
3
DB=2.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求三棱锥A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求不等式的解集:x2+4x-5>0
(Ⅱ)已知三角形△ABC的三个顶点是A(4,0),B(6,7),C(0,8),求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,四边形ABCD为矩形,平面PAD⊥平面ABCD,且E、O分别为PC、BD的中点.求证:
(1)EO∥平面PAD;    
(2)平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在坐标原点,且过点M(1 , 
3
).
(1)求圆C的方程;
(2)已知点P是圆C上的动点,试求点P到直线x+y-4=0的距离的最小值;
(3)若直线l与圆C相切于点M,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足 x2+y2-2x-2y+1=0,则
x-2
y-4
的取值范围为
 

查看答案和解析>>

同步练习册答案