精英家教网 > 高中数学 > 题目详情
8.已知y=ax2+bx(a<0)通过点(1,2),且其图象与y=-x2+2x的图象有二个交点(如图所示).
(Ⅰ)求y=ax2+bx与y=-x2+2x所围成的面积S与a的函数关系;
(Ⅱ)当a,b为何值时,S取得最小值.

分析 (Ⅰ)有已知可得其中一个交点是原点,把另一个交点表示出来,再利用定积分把面积表示处理即可;
(Ⅱ)结合(I)利用导数求解.

解答 解:(Ⅰ)由y=ax2+bx通过点(1,2)可得a+b=2
即b=2-a,由$\left\{\begin{array}{l}y=a{x^2}+bx\\ y=-{x^2}+2x\end{array}\right.$,解得${x_1}=\frac{a}{1+a}$
则y=ax2+bx与y=-x2+2x所围成的面积S与a的函数关系为$S=\int_0^{x_1}{[{(a{x^2}+bx)-(-{x^2}+2x)}]}dx=-\frac{a^3}{{6{{(1+a)}^2}}}$
(Ⅱ)由$S=-\frac{a^3}{{6{{(1+a)}^2}}}$,得$S'=-\frac{1}{6}•\frac{{{a^2}(a+1)(a+3)}}{{{{(1+a)}^4}}}$,
由S'=0得a=-3,a=-1,
当a=-1时,两曲线只有一个交点,不合题意.
当a<-3,S'<0,当a>-3S'>0,
所以当a=-3时,S取得极小值,即最小值,此时b=2-a=5,${S_{min}}=\frac{9}{8}$.

点评 本题主要考查二次函数以及定积分,导数的应用,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC的中点为M,GH的中点为N.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需要说明理由);
(2)求证:直线MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边长,射线OP交球O的表面点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为$\frac{4\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=(cosx,sinx).
(Ⅰ)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2且x∈[$\frac{π}{2}$,π],求x的值
(Ⅱ)设函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,若方程f(x)-k=0在x∈[$\frac{π}{2}$,π]上恰有两个相异的实根α、β,
(1)写出实数k的取值范围(不必说明理由)
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数y=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<e}\\{alnx,x≥e}\end{array}\right.$的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是(  )
A.(-1,$\frac{1}{e}$)B.(0,$\frac{1}{e+1}$]C.(0,$\frac{1}{e}$]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在棱长为2的正四面体ABCD中,G为△BCD的重心,M为线段AG的中点,则三棱锥M-BCD外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(1,k),若$\overrightarrow a$⊥$\overrightarrow b$,则实数k的值是(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为$\frac{na}{m}$+$\frac{mb}{n}$;
③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中命题正确的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题p:集合A={x|ax2-x+1-a=0}中只含有一个元素的充要条件是a=$\frac{1}{2}$;命题q:不等式|x2-2x-15|>x2-2x-15的解集为{x|-3<x<5},则(  )
A.“p∨q”为假B.“p∧q”为真C.p真q假D.p假q真

查看答案和解析>>

同步练习册答案