精英家教网 > 高中数学 > 题目详情
12.“b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx”是“函数f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的单调函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件e

分析 先根据定积分的计算法则求出b的范围,再根据分段函数的单调性得到b的范围,根据充分必要条件的定义即可求出,

解答 解:b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx=lnx|${\;}_{\frac{1}{e}}^{e}$=1+1=2,
∵函数f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的单调函数,
∴0+2>30+b,
解得b<1,
∴b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx”是“函数f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的单调函数”的必要不充分条件,
故选:B

点评 本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题 中要注意分段函数的端点处的函数值的处理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.解不等式:
(1)-x2+2x+3>0
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.当0<x≤$\frac{1}{2}$时,4sin$\frac{π}{3}$x-logax<0恒成立,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件分别求直线方程:
(1)已知直线过点P(2,2)且在两坐标轴的截距相等;
(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=9${\;}^{lo{g}_{2}4.1}$,b=9${\;}^{lo{g}_{2}2.7}$,c=($\frac{1}{3}$)${\;}^{lo{g}_{2}0.1}$,则(  )
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x2+xsinx的图象关于(  )
A.坐标原点对称B.直线y=-x对称C.y轴对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=2,b=1,焦点在x轴上的椭圆方程是(  )
A.$\frac{{x}^{2}}{4}$+y2=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.x2+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示
(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,均有x2+sinx+1<0”的否定为(  )
A.?∈R,均有x2+sinx+1≥0B.?x∈R,使得x2+sinx+1<0
C.?x∈R,使得x2+sinx+1≥0D.?x∈R,均有x2+sinx+1>0

查看答案和解析>>

同步练习册答案