分析 (1)利用因式分解法即可求出不等式的解集,
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0等价于$\left\{\begin{array}{l}{x-2≤0}\\{(x+4)(x-3)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2≥0}\\{(x+4)(x-3)<0}\end{array}\right.$,解得即可.
解答 解:(1)-x2+2x+3>0,等价于x2-2x-3<0,即(x-3)(x+2)<0,解得-2<x<3,故不等式的解集为(-2,3),
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0.等价于$\left\{\begin{array}{l}{x-2≤0}\\{(x+4)(x-3)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2≥0}\\{(x+4)(x-3)<0}\end{array}\right.$,
解得x<-4或2≤x<3,
故不等式的解集为(-∞,-4)∪[2,3)
点评 本题考查了不等式的解法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件e |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com