精英家教网 > 高中数学 > 题目详情
2.命题“?x∈R,均有x2+sinx+1<0”的否定为(  )
A.?∈R,均有x2+sinx+1≥0B.?x∈R,使得x2+sinx+1<0
C.?x∈R,使得x2+sinx+1≥0D.?x∈R,均有x2+sinx+1>0

分析 直接利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,
所以,命题“?x∈R,均有x2+sinx+1<0”的否定为:?x∈R,使得x2+sinx+1≥0.
故选:C.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx”是“函数f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的单调函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,a1=45,a3=41,则前n项的和Sn达到最大值时n的值是23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x2+bx-1(b∈R).
(Ⅰ)若函数y=f(x)在[1,+∞)上单调,求b的取值范围;
(Ⅱ)若函数y=|f(x)|-2有四个零点,求b的取值范围;
(Ⅲ)若函数y=|f(x)|在[0,|b|)上的最大值为g(b),求g(b)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=log2(x2-2x-3),则使f(x)为减函数的区间是(  )
A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=6x的焦点为F,P为抛物线C上任意一点,若M(3,$\frac{1}{2}$),则|PM|+|PF|的最小值是(  )
A.$\frac{11}{2}$B.6C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆与双曲线有相同的焦点F1(-c,0),F2(c,0),椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,若椭圆与双曲线的离心率分别为e1,e2,则3e12+e22的最小值为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=20.01,b=ln$\frac{7}{3}$,c=log3$\frac{11}{12}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

同步练习册答案