精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=log2(x2-2x-3),则使f(x)为减函数的区间是(  )
A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)

分析 由x2-2x-3>0求出函数的定义域,在根据对数函数和二次函数的单调性,由“同增异减”法则求出原函数的减区间

解答 解:由x2-2x-3>0解得,x>3或x<-1,
则函数的定义域是(-∞,-1)∪(3,+∞),
令y=x2-2x-3=(x-1)2-4,即函数y在(-∞,-1)是减函数,在(3,+∞)是增函数,
∵函数y=log2x在定义域上是增函数,
∴函数f(x)的减区间是(-∞,-1).
故选:D.

点评 本题的考点是对数型复合函数的单调性,应先根据真数大于零求出函数的定义域,这是容易忽视的地方,再由“同增异减”判断原函数的单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a=9${\;}^{lo{g}_{2}4.1}$,b=9${\;}^{lo{g}_{2}2.7}$,c=($\frac{1}{3}$)${\;}^{lo{g}_{2}0.1}$,则(  )
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,-cosx),f(x)=$\overrightarrow a$•$\overrightarrow b$,
(1)求f(x)的最小正周期和单调递增区间;
(2)若x∈($\frac{7π}{12},\frac{5π}{6}$),$\overrightarrow a•\overrightarrow b$=$-\frac{5}{4}$,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,正视图和侧视图是全等的等腰三角形则此三棱锥的体积为:$\frac{4}{3}$cm3,此三棱锥的外接球表面积为:9πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x+$\frac{m}{x}$,且函数y=f(x)的图象经过点(1,2).
(1)求m的值;
(2)判断函数的奇偶性并加以证明;
(3)证明:函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,均有x2+sinx+1<0”的否定为(  )
A.?∈R,均有x2+sinx+1≥0B.?x∈R,使得x2+sinx+1<0
C.?x∈R,使得x2+sinx+1≥0D.?x∈R,均有x2+sinx+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆台的下底面周长是上底面周长的3倍,母线长为3,且圆台的侧面积为12π,则该圆台的体积为(  )
A.$\frac{{13\sqrt{5}}}{3}π$B.13πC.$\frac{{13\sqrt{3}}}{3}π$D.$13\sqrt{5}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(t,t),点M是圆O1:x2+(y-1)2=$\frac{1}{4}$上的动点,点N是圆O2:(x-2)2+y2=$\frac{1}{4}$上的动点,则|PN|-|PM|的最大值是(  )
A.1B.$\sqrt{5}$-2C.2+$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)-2,c=log${\;}_{\frac{1}{2}}$2,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

同步练习册答案