精英家教网 > 高中数学 > 题目详情
1.某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示
(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

分析 (1)根据图象可知该销售价格P(元)和时间t(天)分段的两条直线,设出函数解析式求解即可.
(2)销售金额y=PQ化解可得函数解析式;
(3)利用二次函数的性质求解日销售金额最高值.

解答 解:(1)由题意:根据图象可知该销售价格P(元)和时间t(天)分段的两条直线,
设P1=k1t+b1,图象过(0,19)和(25,44),
即得:19=k1×0+b1,44=k1×25+b1
解得:b1=19,k1=1,
则P1=t+19,(0≤t<25)
设P2=k2t+b2,图象过(25,75)和(30,70),
即得:$\left\{\begin{array}{l}{75={k}_{2}×25+{b}_{2}}\\{70={k}_{2}×30+{b}_{2}}\end{array}\right.$,
解得:k2=-1,b2=100,
则P2=-t+100,(25≤t≤30).
∴销售价格P(元)和时间t(天)的函数解析式为P=$\left\{\begin{array}{l}{t+19,(0≤t<25)}\\{-t+100,(25≤t≤30)}\end{array}\right.$.
(2)日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0≤t≤30,t∈N),
则销售金额y=P•Q=$\left\{\begin{array}{l}{(t+19)(-t+40),(0≤t<25)}\\{(-t+100)(-t+40),(25≤t≤30)}\end{array}\right.$;
(3)由(2)可知:当0≤t<25时,日销售金额y=-t2+21t+760,
当t=10或11天时,日销售金额y最大为870元.
当25≤t≤30时,日销售金额y=t2-140t+4000,
当t=25天时,日销售金额y最大为1125元.
∴该产品投放市场第25天时,日销售金额最高,最高值1125元.

点评 本题考查了实际中的生活问题,熟悉图象,通过图象判断关系式建立关系求解,注意定义域的范围问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.直线x-2y=0与x+y-3=0的交点坐标是(  )
A.(-1,2)B.(-2,-1)C.(1,-2)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx”是“函数f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的单调函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C:(x-1)2+(y-1)2=4及直线l:x-y+2=0,则直线l被圆C截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若集合M={0,2,3,7},N={x|x=ab,a∈M,b∈M},则集合N的子集最多有128个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Sn为等比数列{an}的前n项和,an>0,S5=2,S15=14,则S10=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,a1=45,a3=41,则前n项的和Sn达到最大值时n的值是23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x2+bx-1(b∈R).
(Ⅰ)若函数y=f(x)在[1,+∞)上单调,求b的取值范围;
(Ⅱ)若函数y=|f(x)|-2有四个零点,求b的取值范围;
(Ⅲ)若函数y=|f(x)|在[0,|b|)上的最大值为g(b),求g(b)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=20.01,b=ln$\frac{7}{3}$,c=log3$\frac{11}{12}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

查看答案和解析>>

同步练习册答案