精英家教网 > 高中数学 > 题目详情
9.已知圆C:(x-1)2+(y-1)2=4及直线l:x-y+2=0,则直线l被圆C截得的弦长为2$\sqrt{2}$.

分析 由题意可得,圆心为(1,1),半径r=2,求出弦心距d,再利用弦长公式求得直线l被C截得的弦长.

解答 解:由题意可得,圆心为(1,1),半径r=2,由于弦心距d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
故直线l被C截得的弦长为2$\sqrt{4-2}$=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.抛物线x=2y2的焦点坐标是(  )
A.($\frac{1}{8}$,0)B.(0,$\frac{1}{8}$)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件分别求直线方程:
(1)已知直线过点P(2,2)且在两坐标轴的截距相等;
(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x2+xsinx的图象关于(  )
A.坐标原点对称B.直线y=-x对称C.y轴对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=2,b=1,焦点在x轴上的椭圆方程是(  )
A.$\frac{{x}^{2}}{4}$+y2=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.x2+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知cosA=$\frac{5}{13}$,tan$\frac{B}{2}$+cot$\frac{B}{2}$=$\frac{10}{3}$,c=21.
(1)求cos(A-B)的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示
(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{3x+1}{x-2}$的定义域是(-∞,2)∪(2,+∞);值域是(-∞,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2…ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有14个.

查看答案和解析>>

同步练习册答案