精英家教网 > 高中数学 > 题目详情
15.对大于或等于2的正整数的幂运算有如下分解式:
22=1+3,32=1+3+5,42=1+3+5+7,…
23=3+5,33=7+9+11,43=13+14+17+19,…
根据上述分解规律,若m2=1+3+5+…+11,p3的分解中最小的正整数是31,则m+p=12.

分析 根据m2=1+3+5+…+11,p3的分解中最小的正整数是31,利用所给的分解规律,求出m、p,即可求得m+p的值.

解答 解:∵m2=1+3+5+…+11=$\frac{1+11}{2}×6$=36,
∴m=6
∵23=3+5,33=7+9+11,
43=13+15+17+19,
∴53=21+23+25+27+29,63=31+33+35+37+39+41,
∵p3的分解中最小的数是31,
∴p=6
∴m+p=6+6=12
故答案为:12.

点评 本题考查归纳推理,考查学生的阅读能力,确定m、p的值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.2016年,包头市将投资1494.88亿进行城乡建设.其中将对奥林匹克公园进行二期扩建,拟建包头市最大的摩天轮建筑.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为(  )米.
A.75B.85C.100D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在研究某种新药对小白兔的治疗效果时,得到如表数据:
存活数死亡数合计
未用新药10138139
用新药12920149
合计23058288
试分析新药对治疗小白兔是否有99%的把握有效?
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,an-$\frac{2}{{a}_{n}}$=2n,且an<0.
(1)求an
(2)判断数列{an}的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)=ln(1+3x+9xa),对于任意的a∈R,若当x∈(-∞,0]时,f(x)恒有意义,则实数a的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=0.25${\;}^{{x}^{2}-2x+\frac{1}{2}}$的值域是(0,2],单调增区间是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在某个旅游城市里,每年各个月份随着游客数量的变化,从事旅游服务工作的人数也会发生相应的变化.由政府部门的统计数据可知,该城市每月从事旅游服务工作的人数f(n)(单位:千人)可近似地用函数f(n)=Acos(ωn+φ)+k表示,其中n(n∈[1,12],n∈N*)表示月份(如n=1表示1月份),且A>0,ω≠0.经测算,在过去的一年中,f(n)=$\frac{3}{2}$cos[$\frac{π}{6}$(n+2)]+$\frac{28}{5}$.
(1)在过去的一年中,该城市哪个月份从事旅游服务的人数最少?最少时有多少人?
(2)在过去的一年中,该城市从几月份到几月份从事旅游服务工作的人数持续增加?
(3)假设今年该城市的某个旅游景点因环境破坏严重而被迫关闭,那么在此期间,对于函数f(n)=Acos(ωn+φ)+k(A>0,ω≠0)中的A,ω,φ,k四个量,哪个(或哪些)量的值最有可能减小,(忽略其他因素的影响)?试说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若关于x的不等式|ax+2|<3的解集为{x|-$\frac{5}{4}$<x<$\frac{1}{4}$},则实数a的值为(  )
A.4B.-$\frac{4}{5}$C.-20D.-25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=3,AC=BD=2,则D到平面ABC的距离等于(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步练习册答案