精英家教网 > 高中数学 > 题目详情
5.2016年,包头市将投资1494.88亿进行城乡建设.其中将对奥林匹克公园进行二期扩建,拟建包头市最大的摩天轮建筑.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为(  )米.
A.75B.85C.100D.110

分析 设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(7)的值即可.

解答 解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),
由题意可知:A=50,B=110-50=60,T=$\frac{2π}{ω}$=21,∴ω=$\frac{2π}{21}$,
即 f(t)=50sin($\frac{2π}{21}$t+φ)+60,
又因为f(0)=110-100=10,即sinφ=-1,故φ=$\frac{3π}{2}$,
∴f(t)=50sin($\frac{2π}{21}$t+$\frac{3π}{2}$)+60,
∴f(7)=50sin($\frac{2π}{21}$×7+$\frac{3π}{2}$)+60=85.
故选:B.

点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式;考查y=Asin(ωx+φ)中参数的物理意义,注意三角函数的模型的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若函数g(x)=f(-x)+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.观察下列事实:|x|+|y|=1的不同整数解(x,y)有4个,|x|+|y|=2的不同整数解(x,y)有8个,|x|+|y|=3的不同整数解(x,y)有12个,…,则|x|+|y|=15的不同整数解(x,y)的个数为(  )
A.64B.60C.56D.52

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正三棱锥的侧棱长为2,底面边长为3,则该正三棱锥的外接球的表面积为(  )
A.$\frac{4}{3}π$B.C.$\frac{32}{3}π$D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图的数表满足:①第n行首尾两数均为n;②表中的递推关系类似杨辉三角.则第10行(n≥2)第2个数是46.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第59个数对是(  )
A.(3,8)B.(4,7)C.(4,8)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线mx-ny+2=0(m,n>0)被圆x2+y2+2x-2y+1=0截得弦长为2,则$\frac{4}{m}$+$\frac{1}{n}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对大于或等于2的正整数的幂运算有如下分解式:
22=1+3,32=1+3+5,42=1+3+5+7,…
23=3+5,33=7+9+11,43=13+14+17+19,…
根据上述分解规律,若m2=1+3+5+…+11,p3的分解中最小的正整数是31,则m+p=12.

查看答案和解析>>

同步练习册答案