精英家教网 > 高中数学 > 题目详情
16.不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

分析 利用绝对值的几何意义,分类讨论,解不等式,即可得出结论.

解答 解:当x<1时,1-x+2-x<2,∴x>$\frac{1}{2}$,∴$\frac{1}{2}$<x<1;
当1≤x≤2时,x-1+2-x<2,恒成立;
当x>2时 x-1+x-2<2,∴x<$\frac{5}{2}$,∴2<x<$\frac{5}{2}$,
综上所述,不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.
故答案为:$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

点评 本题考查绝对值不等式的解法,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知M为抛物线y2=4x上的一点,点M到直线4x-3y+8=0的距离为d1;点M到y轴距离为d2.则d1+d2的最小值为$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.观察下列各式:72=49,73=343,74=2401,…,则72016的末两位数字为(  )
A.01B.43C.07D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=(${\frac{1}{3}}$)n,把数列{an}的各项排成如下的三角形:

记A(s,t)表示第s行的第t个数,则A(11,12)=${({\frac{1}{3}})^{112}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=$\frac{1}{3}$x3+bx2+x+2有极值点,则b的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整数.
(1)解不等式f2(x)≤2x;
(2)试分别证明:函数f3(x)在(0,1)内有一个零点,且在(0,1)内仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x|.
(I)解关于x的不等式f(x)+f(x-2)≥3;
(Ⅱ)设g(x)=f(x+$\frac{1}{x}$)+f(x-$\frac{1}{x}$),证明:g(x)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.2016年,包头市将投资1494.88亿进行城乡建设.其中将对奥林匹克公园进行二期扩建,拟建包头市最大的摩天轮建筑.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为(  )米.
A.75B.85C.100D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在研究某种新药对小白兔的治疗效果时,得到如表数据:
存活数死亡数合计
未用新药10138139
用新药12920149
合计23058288
试分析新药对治疗小白兔是否有99%的把握有效?
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案