精英家教网 > 高中数学 > 题目详情
6.已知M为抛物线y2=4x上的一点,点M到直线4x-3y+8=0的距离为d1;点M到y轴距离为d2.则d1+d2的最小值为$\frac{7}{5}$.

分析 如图点P到准线的距离等于点P到焦点F的距离,过焦点F作直线4x-3y+8=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.

解答 解:抛物线y2=4x的焦点坐标(1,0),准线方程为:x=-1,
如图点M到准线的距离等于点P到焦点F的距离,
过焦点F作直线4x-3y+8=0的垂线,此时d1+d2最小.
∵F(1,0),则d1+d2=$\frac{|4+8|}{\sqrt{{4}^{2}+(-3)^{2}}}$-1=$\frac{7}{5}$,
故答案为:$\frac{7}{5}$.

点评 本题主要考查了抛物线的简单性质,两点距离公式的应用.解此类题设宜先画出图象,进而利用数形结合的思想解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow{b}$=(1,sinx+cosx),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值及取得最大值相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.我们把1,4,9,16,25,…这些数称为正方形数,这是因为这些数目的点可以排成正方形(如图).

由此可推得第n个正方形数是n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且a1=3,4Sn+1=6an+1-an+4Sn,则数列{an}的通项公式为an=3•($\frac{1}{2}$)n-1,n∈N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax2+ln(x+1)
(1)当a=-$\frac{1}{4}$时,求函数f(x)的单调区间
(2)当x∈[0,+∞)时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面区域内,求实数a的取值范围
(3)求证:(1+$\frac{2}{2×3}$)(1+$\frac{4}{3×5}$)(1+$\frac{8}{5×9}$)…[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]<e(其中n∈N+,e是自然数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l经过点A(-1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ-5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着智能手机的发展,微信越来越成为人们交流的一种方式,某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(Ⅰ)由以上统计数据填写下面2×2列联表,关判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成102737
不赞成10313
合计203050
(Ⅱ)若对年龄在[55,65)的被调查人中随机抽取两人进行追踪调查,求至少有1人赞成使用微信交流的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若函数g(x)=f(-x)+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

查看答案和解析>>

同步练习册答案