精英家教网 > 高中数学 > 题目详情
2.我们把1,4,9,16,25,…这些数称为正方形数,这是因为这些数目的点可以排成正方形(如图).

由此可推得第n个正方形数是n2

分析 根据12=1,22=4,32=9,可得第n个正方形数.

解答 解:∵12=1,22=4,32=9,
∴第n个正方形数就是n2
故答案为:n2

点评 本题考查考查运算求解能力,推理论证能力.解题时要认真审题,注意总结规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数y=1-2sin2(x+$\frac{π}{4}$)是(  )
A.最小正周期为π的偶函数B.最小正周期为π的奇函数
C.最小正周期为2π的偶函数D.最小正周期为2π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$).
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)当x∈[0,$\frac{π}{3}$]求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,将曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数)上所有点横坐标变为原来的2倍得到曲线C2,将曲线C1向上平移一个单位得到曲线C3,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C2的普通方程及曲线C3的极坐标方程;
(Ⅱ)若点P是曲线C2上任意一点,点Q是曲线C3上任意一点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=2sin(πx)+$\frac{1}{1-x}$(x∈[-2,4])的所有零点之和为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD的底面为平行四边形,高为h,过底面一边BC作截面,与侧面PAQ交于EF,若截面将棱锥分成体积相等的两部分,
(I)求证:EF∥平面ABCD;
(II)求EF到底面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点,且∠MCN=120°.
(1)求圆C的标准方程;
(2)过点P(0,2)的直线l与圆C交于不同的两点A,B,若设点G为△OAB的重心,当△MNG的面积为$\sqrt{3}$时,求直线l的方程.
备注:△ABC的重心G的坐标为$(\frac{{{x_A}+{x_B}+{x_C}}}{3},\frac{{{y_A}+{y_B}+{y_C}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知M为抛物线y2=4x上的一点,点M到直线4x-3y+8=0的距离为d1;点M到y轴距离为d2.则d1+d2的最小值为$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.观察下列各式:72=49,73=343,74=2401,…,则72016的末两位数字为(  )
A.01B.43C.07D.49

查看答案和解析>>

同步练习册答案