精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若函数g(x)=f(-x)+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围.

分析 (1)利用二倍角公式及变形,两角差的正弦公式化简解析式,由三角函数的周期公式、正弦函数的对称轴分别列出方程,求出ω的值可得f(x)的解析式;
(2)由正弦函数的单调区间和整体思想求出f(x)的单调递增区间;
(3)由(1)化简g(x),由x的范围2x-$\frac{π}{6}$的范围,由正弦函数的图象与性质求出$sin(2x-\frac{π}{6})$的范围,将
g(x)的零点问题转化为两个函数图象的交点问题,由条件和正弦函数的图象列出不等式,求出实数a的取值范围.

解答 解:(1)由题意得,f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$=$\frac{\sqrt{3}}{2}sin2ωx-\frac{1}{2}(1+cos2ωx)+\frac{3}{2}$=$sin(2ωx-\frac{π}{6})+1$,
∵f(x)的最小正周期为π,
∴$\frac{2π}{2|ω|}=π$,则ω=±1,
∵图象关于直线x=$\frac{π}{6}$对称,
∴$2ω×\frac{π}{6}-\frac{π}{6}=\frac{π}{2}+kπ(k∈Z)$,得ω=2+3k(k∈Z),即ω=-1,
∴f(x)=$sin(-2x-\frac{π}{6})+1$=$-sin(2x+\frac{π}{6})+1$;
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ(k∈Z)$得,
$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ(k∈Z)$,
∴f(x)单调递增区间是$[\frac{π}{6}+kπ,\frac{2π}{3}+kπ](k∈Z)$.
(3)由(1)得,g(x)=f(-x)+a=$sin(2x-\frac{π}{6})+1+a$,
∵0$≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,则$-\frac{1}{2}≤sin(2x-\frac{π}{6})≤1$,
∵函数g(x)=f(-x)+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,
∴y=$sin(2x-\frac{π}{6})$和y=-1-a的图象有且仅有一个交点,
∴$-\frac{1}{2}≤-1-a<\frac{1}{2}$或-1-a=1,
解得$-\frac{3}{2}<a≤-\frac{1}{2}$或a=-2,
∴实数a的取值范围是{a|a=-2或$-\frac{3}{2}<a≤-\frac{1}{2}$};

点评 本题考查了二倍角公式及变形、两角差的正弦公式,正弦函数的图象与性质的应用,以及函数零点的转化,考查整体思想,转化思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,将曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数)上所有点横坐标变为原来的2倍得到曲线C2,将曲线C1向上平移一个单位得到曲线C3,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C2的普通方程及曲线C3的极坐标方程;
(Ⅱ)若点P是曲线C2上任意一点,点Q是曲线C3上任意一点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知M为抛物线y2=4x上的一点,点M到直线4x-3y+8=0的距离为d1;点M到y轴距离为d2.则d1+d2的最小值为$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.观察下列等式

据此规律,第n个等式可为1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABA1-DCD1中,${D_1}C=\sqrt{2}a$,DD1=DA=DC=a,点E、F分别是BC、DC的中点.
(Ⅰ)证明:AF⊥ED1
(Ⅱ)求点E到平面AFD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.观察下列各式:72=49,73=343,74=2401,…,则72016的末两位数字为(  )
A.01B.43C.07D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=(${\frac{1}{3}}$)n,把数列{an}的各项排成如下的三角形:

记A(s,t)表示第s行的第t个数,则A(11,12)=${({\frac{1}{3}})^{112}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.2016年,包头市将投资1494.88亿进行城乡建设.其中将对奥林匹克公园进行二期扩建,拟建包头市最大的摩天轮建筑.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为(  )米.
A.75B.85C.100D.110

查看答案和解析>>

同步练习册答案