精英家教网 > 高中数学 > 题目详情
3.设直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

分析 (1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角坐标方程.
(2)把直线l的参数方程代入曲线C的直角坐标方程可得:3t2-8t-16=0,可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$.

解答 解:(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐标方程:y2=4x.
(2)把直线l的参数方程$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)代入曲线C的直角坐标方程可得:3t2-8t-16=0,
∴t1+t2=$\frac{8}{3}$,t1t2=-$\frac{16}{3}$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(\frac{8}{3})^{2}-4×(-\frac{16}{3})}$=$\frac{16}{3}$.
∴$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\frac{16}{3}}{\frac{16}{3}}$=1.

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、直线与抛物线相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行问卷调查得到了如下的列联表,在50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3还喜欢打羽毛球,B1,B2还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且a1=3,4Sn+1=6an+1-an+4Sn,则数列{an}的通项公式为an=3•($\frac{1}{2}$)n-1,n∈N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l经过点A(-1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ-5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着智能手机的发展,微信越来越成为人们交流的一种方式,某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(Ⅰ)由以上统计数据填写下面2×2列联表,关判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成102737
不赞成10313
合计203050
(Ⅱ)若对年龄在[55,65)的被调查人中随机抽取两人进行追踪调查,求至少有1人赞成使用微信交流的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=2|x|-|x+3|.
(Ⅰ)求不等式f(x)≤7的解集S;
(Ⅱ)若关于x不等式f(x)+|2t-3|≤0有解,求参数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若函数g(x)=f(-x)+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集为(-∞,-2]∪[2,+∞),求实数m的值;
(2)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.观察下列事实:|x|+|y|=1的不同整数解(x,y)有4个,|x|+|y|=2的不同整数解(x,y)有8个,|x|+|y|=3的不同整数解(x,y)有12个,…,则|x|+|y|=15的不同整数解(x,y)的个数为(  )
A.64B.60C.56D.52

查看答案和解析>>

同步练习册答案