分析 (1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角坐标方程.
(2)把直线l的参数方程代入曲线C的直角坐标方程可得:3t2-8t-16=0,可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$.
解答 解:(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐标方程:y2=4x.
(2)把直线l的参数方程$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)代入曲线C的直角坐标方程可得:3t2-8t-16=0,
∴t1+t2=$\frac{8}{3}$,t1t2=-$\frac{16}{3}$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(\frac{8}{3})^{2}-4×(-\frac{16}{3})}$=$\frac{16}{3}$.
∴$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\frac{16}{3}}{\frac{16}{3}}$=1.
点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、直线与抛物线相交弦长问题,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 赞成 | 10 | 27 | 37 |
| 不赞成 | 10 | 3 | 13 |
| 合计 | 20 | 30 | 50 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 60 | C. | 56 | D. | 52 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com