精英家教网 > 高中数学 > 题目详情
13.观察下列事实:|x|+|y|=1的不同整数解(x,y)有4个,|x|+|y|=2的不同整数解(x,y)有8个,|x|+|y|=3的不同整数解(x,y)有12个,…,则|x|+|y|=15的不同整数解(x,y)的个数为(  )
A.64B.60C.56D.52

分析 观察可得不同整数解的个数可以构成一个首项为4,公差为4的等差数列,则所求为第15项,可计算得结果.

解答 解:观察可得不同整数解的个数4,8,12,…
可以构成一个首项为4,公差为4的等差数列,
通项公式为an=4n,则所求为第15项,所以a15=60.
故选B.

点评 本题考查归纳推理,寻找关系式内部,关系式与关系式之间数字的变化特征,从特殊到一般,进行归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=(${\frac{1}{3}}$)n,把数列{an}的各项排成如下的三角形:

记A(s,t)表示第s行的第t个数,则A(11,12)=${({\frac{1}{3}})^{112}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整数.
(1)解不等式f2(x)≤2x;
(2)试分别证明:函数f3(x)在(0,1)内有一个零点,且在(0,1)内仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x|.
(I)解关于x的不等式f(x)+f(x-2)≥3;
(Ⅱ)设g(x)=f(x+$\frac{1}{x}$)+f(x-$\frac{1}{x}$),证明:g(x)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列等式:

按此规律,第10个等式的右边等于280.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.2016年,包头市将投资1494.88亿进行城乡建设.其中将对奥林匹克公园进行二期扩建,拟建包头市最大的摩天轮建筑.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第7分钟时他距地面大约为(  )米.
A.75B.85C.100D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤m的解集为[-1,5],求实数a,m的值;
(Ⅱ)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,an-$\frac{2}{{a}_{n}}$=2n,且an<0.
(1)求an
(2)判断数列{an}的增减性.

查看答案和解析>>

同步练习册答案