精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤m的解集为[-1,5],求实数a,m的值;
(Ⅱ)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).

分析 (Ⅰ)根据绝对值不等式的解法建立条件关系即可求实数a,m的值.
(Ⅱ)根据绝对值的解法,进行分段讨论即可得到不等式的解集.

解答 解:(Ⅰ)∵f(x)≤m,
∴|x-a|≤m,
即a-m≤x≤a+m,
∵f(x)≤m的解集为{x|-1≤x≤5},
∴$\left\{\begin{array}{l}{a-m=-1}\\{a+m=5}\end{array}\right.$,解得a=2,m=3.
(Ⅱ)当a=2时,函数f(x)=|x-2|,
则不等式f(x)+t≥f(x+2)等价为|x-2|+t≥|x|.
当x≥2时,x-2+t≥x,即t≥2与条件0≤t<2矛盾.
当0≤x<2时,2-x+t≥x,即0≤x≤$\frac{t+2}{2}$成立.
当x<0时,2-x+t≥-x,即t≥-2恒成立.
综上不等式的解集为(-∞,$\frac{t+2}{2}$].

点评 本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集为(-∞,-2]∪[2,+∞),求实数m的值;
(2)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.观察下列事实:|x|+|y|=1的不同整数解(x,y)有4个,|x|+|y|=2的不同整数解(x,y)有8个,|x|+|y|=3的不同整数解(x,y)有12个,…,则|x|+|y|=15的不同整数解(x,y)的个数为(  )
A.64B.60C.56D.52

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图的数表满足:①第n行首尾两数均为n;②表中的递推关系类似杨辉三角.则第10行(n≥2)第2个数是46.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第59个数对是(  )
A.(3,8)B.(4,7)C.(4,8)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式$\sqrt{1-x}$<x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线mx-ny+2=0(m,n>0)被圆x2+y2+2x-2y+1=0截得弦长为2,则$\frac{4}{m}$+$\frac{1}{n}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式|5x-x2|<6的解集是{x|-1<x<2或3<x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PE⊥平面ABCD,垂足E在线段AD上.且AE=$\frac{1}{3}$ED.
(I)在PC上是否存在一点M,使DM∥平面PBE;
(Ⅱ)若EB⊥EC,CD=$\sqrt{5}$,PB=PC=2$\sqrt{3}$.求二面角P-CD-E的余弦值.

查看答案和解析>>

同步练习册答案