精英家教网 > 高中数学 > 题目详情
7.解不等式$\sqrt{1-x}$<x+1.

分析 两边平方,等价转化即可解不等式.

解答 解:由题意,$\left\{\begin{array}{l}{1-x≥0}\\{x+1>0}\\{1-x<{x}^{2}+2x+1}\end{array}\right.$,
∴1≥x>0.
∴不等式的解集为{x|1≥x>0}.

点评 本题考查不等式的解法,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设n∈N*且sinx+cosx=-1,请归纳猜测sinnx+cosnx的值.(先观察n=1,2,3,4时的值,归纳猜测sinnx+cosnx的值,不必证明.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列等式:

按此规律,第10个等式的右边等于280.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ax-logax,要使f(x)恒有两个零点,则a的取值范围是(  )
A.(1,e${\;}^{\frac{1}{e}}}$)B.(1,e]C.(1,e2D.(e${\;}^{\frac{1}{e}}}$,e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤m的解集为[-1,5],求实数a,m的值;
(Ⅱ)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式|x+1|+|2x-3|-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆x2+y2-2x+4y+1=0关于直线2ax-by-2=0(a>0,b>0)对称,则$\frac{9}{a}$+$\frac{1}{b}$的最小值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知点A(-3,0),B(3,0),M是线段AB上的任意一点,在AB的同侧分别作正方形AMCD、MBEF,⊙P和⊙Q是两个正方形的外接圆,它们交于点M,N.
(1)证明:直线MN恒过一定点S,并求S的坐标;
(2)过A作⊙Q的割线,交⊙Q于G、H两点,求|AH|•|AG|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,直三棱柱ABC-A1B1C1的底边是边长为2的正三角形.
(Ⅰ)如果AB1⊥BC1,求三棱柱的高;
(Ⅱ)在(Ⅰ)的条件下,求二面角A1-AB1-C1的余弦值.

查看答案和解析>>

同步练习册答案