精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD的顶点P在底面ABCD的投影恰好是点A,三视图如图所示,则此四棱锥的表面积为(  )
A、2
B、3
C、2+
2
D、3+
2
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由四棱锥P-ABCD的顶点P在底面ABCD中的投影恰好是A,我们易得PA是棱锥的高,由三视图我们易得底面边长,及棱锥的高均为1,由此我们易求出各棱的长,进而求出各个面的面积,进而求出四棱锥P-ABCD的表面积.
解答: 解:由三视图我们易得四棱锥P-ABCD的底面棱长为1,高PA=1,
则四棱锥P-ABCD的底面积为:1,
侧面积为:S△PAB+S△PBC+S△PCD+S△PAD=2×
1
2
×1×1+2×
1
2
×1×
2
=1+
2

则四棱锥P-ABCD的表面积为 2+
2

故选:C
点评:本题考查由三视图求几何体的表面积,考查由三视图看出几何体中各个部分的长度,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=2,an+1=
1+an
1-an
 n∈N*,记Tn=a1a2…an,则T2010等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D,E,F分别是△ABC的三边BC,CA,AB上的点,且满足
AF
=
2
3
AB
AE
=
3
4
AC
AD
=λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)(λ∈R),
DE
DA
=
DE
DC
DF
=μ(
BD
sinB
|
BD
|
+
AD
cosB
|
AD
|
)(μ∈R).则
|
EF
|
|
BC
|
=(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1的参数方程为
x=
2
cosα
y=1+
2
sinα
(α为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为
2
ρsin(θ+
π
4
)=5.设点P,Q分别在曲线C1和C2上运动,则|PQ|的最小值为(  )
A、
2
B、2
2
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,an+1=an+2n,那么a2013的值是(  )
A、20112
B、2010×2009
C、2012×2011
D、2013×2012

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是偶函数且在(0,+∞)上减函数,且f(3)=1,则不等式f(x)<1的解集为(  )
A、{x|x>3或-3<x<0}
B、{x|x<-3或0<x<3}
C、{x|x<-3或x>3}
D、{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=tan(-x+
π
4
)的单调递减区间是(  )
A、(kπ-
π
4
,kπ+
4
)(k∈Z)
B、(kπ-
4
,kπ+
π
4
)(k∈Z)
C、(2kπ-
π
4
,2kπ+
4
)(k∈Z)
D、(2kπ-
4
,2kπ+
π
4
)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

若270°<α<360°,三角函数式
1
2
+
1
2
1
2
+
1
2
cos2α
的化简结果为(  )
A、sin
α
2
B、-sin
α
2
C、cos
α
2
D、-cos
α
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(1-2log2x)n的展开式的所有奇数项的二项式系数之和为64.
(1)求n的值;
(2)求展开式的所有项的系数之和;
(3)求展开式的所有偶数项的系数之和.

查看答案和解析>>

同步练习册答案