ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µãO£¬½¹µãÔÚXÖáÉÏ£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬MÊÇÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬¡÷MF1F2µÄÃæ»ýΪ4£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8
2
£®
£¨¢ñ£©Çó´ËÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôNÊÇ×ó±êÆ½ÃæÄÚÒ»¶¯µã£¬GÊÇ¡÷MF1F2µÄÖØÐÄ£¬ÇÒ
GF2
ON
=0
£¬Ç󶯵ãNµÄ¹ì¼£·½³Ì£»
£¨¢ó£©µãpÉó´ËÍÖÔ²ÉÏÒ»µã£¬µ«·Ç¶ÌÖá¶Ëµã£¬²¢ÇÒ¹ýP¿É×÷£¨¢ò£©ÖÐËùÇóµÃ¹ì¼£µÄÁ½Ìõ²»Í¬µÄÇÐÏߣ¬Q¡¢RÊÇÁ½¸öÇе㣬Çó
PQ
PR
µÄ×îСֵ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©Éè³öÍÖÔ²·½³Ì£¬ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃa£¬ÔÙÓÉÃæ»ý¹«Ê½£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÓÉÖØÐÄ×ø±ê¹«Ê½£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý×ø±ê¹«Ê½£¬¼´¿ÉµÃµ½¹ì¼£·½³Ì£»
£¨¢ó£©Åж϶¯µãNµÄ¹ì¼££¬ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃµ½|
PQ
|=|
PR
|£¬¼°cos£¼
PQ
£¬
PR
£¾£¬´Ó¶ø¸ù¾ÝÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå¼°¾ùÖµ²»µÈʽµÃ
PQ
PR
µÄ×îСֵ£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâÒâÉèÍÖÔ²µÄ·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬
ÒòΪMÊÇÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬
¡÷MF1F2µÄÃæ»ýΪ4£¬¡÷ABF2µÄÖܳ¤Îª8
2
£¬
ËùÒÔ 4a=8
2
£¬
1
2
•b•2c=4
£¬
¡à
bc=4
b2+c2=8
¡àb=c=2£¬a=2
2
£¬
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
x2
8
+
y2
4
=1
£®
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÔòÓÉ£¨¢ñ£©µÃF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ËùÒÔG(
x
3
£¬
y
3
)
£¬
´Ó¶ø
GF2
=(2-
x
3
£¬-
y
3
)
£¬
ON
=(x£¬y)
£®ÒòΪ
GF2
ON
=0
£¬
ËùÒÔÓÐ(2-
x
3
£¬-
y
3
)•(x£¬y)=(2-
x
3
)x+(-
y
3
)y=0£¬¼´x2+y2-6x=0
£¬
ÓÉÓÚGÊÇ¡÷NF1F2µÄÖØÐÄ£¬¼´N£¬F1£¬F2Ó¦µ±ÊÇÒ»¸öÈý½ÇÐεÄÈý¸ö¶¥µã£¬
Òò´ËËùÇ󶯵ãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª¶¯µãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£¬
¼´£¨x-3£©2+y2=9£¨y¡Ù0£©£®
ÏÔÈ»´Ë¹ì¼£ÊÇÒÔµãC£¨3£¬0£©£©ÎªÔ²ÐÄ£¬°ë¾¶r=3µÄÔ²
³ýÈ¥Á½µã£¨0£¬0£©£¬£¨6£¬0£©Ê£Óಿ·ÖµÄ²¿·ÖÇúÏߣ®
ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃ|
PQ
|=|
PR
|=
|
PC
|2-r2
=
(m-3)2+n2-9
£¬
cos£¼
PQ
£¬
PR
£¾=cos2¡ÏQPC=1-2sin2¡ÏQPC=1-2•£¨
r
|
PC
|
£©2=1-
18
(m-3)2+n2
£¬
´Ó¶ø¸ù¾ÝÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå¼°¾ùÖµ²»µÈʽµÃ£º
PQ
PR
=|
PQ
|•|
PR
|•cos£¼
PQ
£¬
PR
£¾=[£¨m-3£©2+n2-9]•[1-
18
(m-3)2+n2
]
=[£¨m-3£©2+n2]+
162
(m-3)2+n2
-27¡Ý2
162
-27=18
2
-27£®
µ±ÇÒ½öµ±(m-3)2+n2=9
2
ʱ£¬È¡¡°=¡±£¨¡ù£© 
ÓɵãP£¨m£¬n£©ÔÚÍÖÔ²
x2
8
+
y2
4
=1
ÉÏ£¨·Ç¶ÌÖá¶Ëµã£©£¬²¢ÇÒÔÚÔ²£¨x-3£©2+y2=9Í⣬
¿ÉÖª3£¼|
PC
|¡Ü3+2
2
µ«|
PC
|¡Ù|
MC
|=
13
⇒(m-3)2+n2¡Ê(9£¬13)¡È(13£¬17+12
2
]

ÓÉÓÚ9
2
¡Ê(9£¬13)
£¬ËùÒÔÌõ¼þ£¨¡ù£©µÄÒªÇóÂú×㣮
Òò´Ë
PQ
PR
µÄ×îСֵΪ18
2
-27
£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=3x2-3x£¬Ö±Ïßl1£ºx=2ºÍl2£ºy=3tx£¨ÆäÖÐtΪ³£Êý£¬ÇÒ0£¼t£¼1£©£¬Ö±Ïßl2Ó뺯Êýf£¨x£©µÄͼÏóÒÔ¼°Ö±Ïßl1¡¢l2Ó뺯Êýf£¨x£©µÄͼÏóËùΧ³ÉµÄ·â±ÕͼÐÎÈçͼÖÐÒõÓ°Ëùʾ£¬ÉèÕâÁ½¸öÒõÓ°ÇøÓòµÄÃæ»ýÖ®ºÍΪS£¨t£©£®
£¨¢ñ£©Çóº¯ÊýS£¨t£©µÄ½âÎöʽ£»
£¨¢ò£©¶¨Ò庯Êýh£¨x£©=S£¨x£©£¬x¡ÊR£®Èô¹ýµãA£¨1£¬m£©£¨m¡Ù4£©¿É×÷ÇúÏßy=h£¨x£©£¨x¡ÊR£©µÄÈýÌõÇÐÏߣ¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèiΪÐéÊýµ¥Î»£¬¸´Êý z1=3-ai£¬z2=1+2i£¬Èô
z1
z2
ÊÇ´¿ÐéÊý£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A¡¢-
3
2
B¡¢
3
2
C¡¢-6
D¡¢6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

C
 
n-1
2n-3
+C
 
2n-3
n+1
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæABCDÊǾØÐΣ¬²àÃæPABÊÇÕýÈý½ÇÐΣ¬AB=2£¬BC=
2
£¬PC=
6
£¬
£¨¢ñ£©ÇóÖ¤£ºPD¡ÍAC£»
£¨¢ò£©ÒÑÖªÀâPAÉÏÓÐÒ»µãE£¬Èô¶þÃæ½ÇE-BD-AµÄ´óСΪ45¡ã£¬ÊÔÇóBPÓëÆ½ÃæEBDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÖУ¬¶¥µãA£¨4£¬5£©£¬µãBÔÚÖ±Ïßl£º2x-y+2=0ÉÏ£¬µãCÔÚxÖáÉÏ£¬Çó¡÷ABCÖܳ¤µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx-x-
a
x
£®
£¨1£©Èôa=0£¬Çóf£¨x£©µÄ¼«´óÖµ£»
£¨2£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x|1¡Üx¡Ü5}£¬B={x|£¨x-1£©£¨x-3£©¡Ý0}£®Èô´Ó¼¯ºÏAÖÐËæ»úȡһ¸ùÊýx0£¬Ôòx0¡ÊA¡ÉBµÄ¸ÅÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÆ½ÃæÉϲ»ÖغϵÄËĵãP£¬A£¬B£¬CÂú×ã
PA
+
PB
+
PC
=0
£¬ÇÒ
AB
+
AC
=m
AP
£¬ÄÇôʵÊýmµÄֵΪ£¨¡¡¡¡£©
A¡¢5B¡¢4C¡¢3D¡¢2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸