精英家教网 > 高中数学 > 题目详情
18.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆上存在点P使得$\overrightarrow{PA}•\overrightarrow{PB}=0$,则m的取值范围是(  )
A.(-∞,4]B.(6,+∞)C.(4,6)D.[4,6]

分析 根据题意,得出圆C的圆心C与半径r,设点P(a,b)在圆C上,表示出$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b),利用$\overrightarrow{PA}•\overrightarrow{PB}=0$,求出m2,根据|OP|表示的几何意义,得出m的取值范围.

解答 解:∵圆C:(x-3)2+(y-4)2=1,
∴圆心C(3,4),半径r=1;
设点P(a,b)在圆C上,则$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b);
∵$\overrightarrow{PA}•\overrightarrow{PB}=0$
∴(a+m)(a-m)+b2=0;
即m2=a2+b2
∴|OP|=$\sqrt{{a}^{2}+{b}^{2}}$,
∴|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4;
∴m的取值范围是[4,6].
故选D.

点评 本题考查了平面向量的应用问题,也考查了直线与圆的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.△ABC的内角A,B,C的对边分别为a,b,c,若$cosC=\frac{{2\sqrt{2}}}{3}$,bcosA+acosB=2,则△ABC的外接圆的面积为(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,P,Q为双曲线C右支上的两点,若$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{{F}_{2}Q}$,且$\overrightarrow{{F}_{1}Q}$•$\overrightarrow{PQ}$=0,则该双曲线的离心率是(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{17}}{3}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知P,Q是圆心在坐标原点O的单位圆上的两点,且分别位于第一象限和第四象限,点P的横坐标为$\frac{4}{5}$,点Q的横坐标为$\frac{5}{13}$,则cos∠POQ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|kx-1|.
(Ⅰ)若f(x)≤3的解集为[-2,1],求实数k的值;
(Ⅱ)当k=1时,若对任意x∈R,不等式f(x+2)-f(2x+1)≤3-2m都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.矩形OABC的四个顶点坐标依次为$O({0,0}),A({\frac{π}{2},0}),B({\frac{π}{2},1}),C({0,1})$,线段OA,OC及$y=cosx({0<x≤\frac{π}{2}})$的图象围成的区域为Ω,若矩形OABC内任投一点M,则点M落在区域内Ω的概率为$\frac{2}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面ABB1A1,且AA1=AB=2.
(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为$\frac{π}{6}$,请问在线段A1C上是否存在点E,使得二面角A-BE-C的大小为$\frac{2π}{3}$,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-$\sqrt{6}$,0),e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,设R(x0,y0)是椭圆C上一动点,由原点O向圆(x-x02+(y-y02=4引两条切线,分别交椭圆于点P,Q,若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1•k2为定值;
(Ⅲ)在(Ⅱ)的条件下,试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)$的左右焦点,P为双曲线右支上异于顶点的任一点,O为坐标原点,则下列说法正确的是(  )
A.△PF1F2的内切圆圆心在直线$x=\frac{a}{2}$上B.△PF1F2的内切圆圆心在直线x=b上
C.△PF1F2的内切圆圆心在直线OP上D.△PF1F2的内切圆经过点(a,0)

查看答案和解析>>

同步练习册答案